• Title/Summary/Keyword: Gaussian plume dispersion model

Search Result 33, Processing Time 0.017 seconds

Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors (확산계수의 모델링방법이 대기확산인자에 미치는 영향)

  • Hwang, Won Tae;Kim, Eun Han;Jeong, Hae Sun;Jeong, Hyo Joon;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.60-67
    • /
    • 2013
  • A diffusion coefficient is an important parameter in the prediction of atmospheric dispersion using a Gaussian plume model, and its modelling approach varies. In this study, dispersion coefficients recommended by the U. S. Nuclear Regulatory Commission's (U. S. NRC's) regulatory guide and the Canadian Nuclear Safety Commission's (CNSC's) regulatory guide, and used in probabilistic accident consequence analysis codes MACCS and MACCS2 have been investigated. Based on the atmospheric dispersion model for a hypothetical accidental release recommended by the U. S. NRC, its influence to atmospheric dispersion factor was discussed. It was found that diffusion coefficients are basically predicted from a Pasquill- Gifford curve, but various curve fitting equations are recommended or used. A lateral dispersion coefficient is corrected with consideration for the additional spread due to plume meandering in all models, however its modelling approach showed a distinctive difference. Moreover, a vertical dispersion coefficient is corrected with consideration for the additional plume spread due to surface roughness in all models, except for the U. S. NRC's recommendation. For a specified surface roughness, the atmospheric dispersion factors showed differences up to approximately 4 times depending on the modelling approach of a dispersion coefficient. For the same model, the atmospheric dispersion factors showed differences by 2 to 3 times depending on surface roughness.

Assessment of Dispersion Coefficients and Downward Positions of Water Spray for Small-Scale Release of Chlorine Gas

  • Jang, Seo-Il;Kim, Youngran;Yu, Wooyun;Shin, Dongil;Park, Kyoshik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • To assess downward positions of water spray for the small-scale release of chlorine gas, dispersion coefficients for the Gaussian dispersion model were validated at the small-scale release experiment. And the downwind distances of water spray were assessed with the simulated results. As results, the Gaussian plume model using the Briggs' dispersion coefficient well estimated the dispersed characteristics for small-scale release of chlorine gas. The best adequate downwind position of water spray is the position of the maximum concentration of chlorine at the ground level. And the adequate vertical and horizontal dimensions of water spray consider the maximum width and height of cloud.

A Study on the Diffusion of Gaseous Radioactive Effluents Based on the Statistical Method (통계적 방법을 이용한 방사성 물질의 대기 확산 평가)

  • Na, Man-Gyun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.251-257
    • /
    • 1998
  • A diffusion model of radioactive gaseous effluents is improved to apply for domestic nuclear power plants. Up to now, XOQDOQ computer code package developed by U. S NRC has been used for the assessment of radioactive plume dispersion by normal operation of domestic nuclear power plants. XOQDOQ adopts the straight-line Gaussian plume model which was basically derived for the plane terrain. However, since there are so many mountains in Korea, the several shortcomings of XOQDOQ are improved to consider the complex terrain effects. In this work, wind direction change is considered by modifying the wind rose frequency using meteorological data of the local weather stations. In addition, an effective height correction model, a plume reduction model due to plume penetration into mountain, and a wet deposition model are adopted for more realistic assessments. The proposed methodology is implemented in Yongkwang nuclear power plants, and can be used for other domestic nuclear power plants.

  • PDF

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.

A Study on Transport and Dispersion of Chemical Agent According to Lagrangian Puff and Particle Models in NBC_RAMS (화생방 보고관리 및 모델링 S/W 시스템(NBC_RAMS)의 라그랑지안 퍼프 및 입자 모델에 따른 화학작용제 이송·확산 분석)

  • Hyeyun Ku;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.102-112
    • /
    • 2023
  • This research mainly focuses on the transport and dispersion of chemical agent plume according to the Lagrangian Puff Model and Lagrangian Particle Model of NBC_RAMS(Nuclear, Biological, Chemical Reporting And Modeling S/W System). NBC_RAMS was developed with the purposes of estimating the fate of Chemical, Biological, and Radioactive(CBR) agent plumes and evaluating damages in the Republic of Korea. First, it calculates the local weather pattern, i.e. wind speed, wind direction, and temperature, by considering the effects of land uses and topography. The plume behaviors are calculated by adopting the Lagrangian Puff Model(LPFM) or Lagrangian Particle Model(LPTM). In this research, we assumed a virtual chemical agent exposure event in a stable atmospheric condition during the summer season. The plume behaviors were estimated by both LPFM and LPTM on the used area(urbanized and dry area) and the agricultural land. The higher heat flux in the used area led to stronger winds and further downward movement moving of the chemical agent than the farmland. The lateral dispersion of the chemical plume was emphasized in the Lagrangian Puff Model because it adopted Gaussian distribution.

A case study for the dispersion parameter modification of the Gaussian plume model using linear programming (Linear Programming을 이용한 가우시안 모형의 확산인자 수정에 관한 사례연구)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2003
  • We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, ${\sigma}_y\;and\;{\sigma}_z$ using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.

A Study on Separation Distance between Industrial Source and Residential Areas to Avoid Odor Annoyance Using AUSPLUME Model (AUSPLUME 모델을 이용한 악취를 피하기 위한 산업오염원과 주거단지 사이 이격거리에 관한 연구)

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Separation distance between industrial source and residential areas to avoid odor annoyance was investigated using AUSPLUME model. A Gaussian plume model (AUSPLUME) for the dispersion was used to calculate odor emission from ground level area source. Using the dispersion model to calculate ambient odor concentrations, the separation distance between industrial source and residental areas was defined by %HA (percentage of highly annoyed person) and odor percentile concentration (C98). The result was compared with the separation distance of various nation guidelines for livestock buildings. The calculated separation distance for industrial source showed similar pattern comparing with various guidelines for livestock buildings.

Source term estimation using least squares method in a radiological emergency (원자력 비상시 최소자승법을 이용한 선원항의 추정)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • Atmospheric dispersion modelling has been widely used to predict the fate and transport of radioactive or toxic materials released from nuclear facilities which is an unlikely accidental event. To improve the forecasting performance of the dispersion model, it is required that source rate and dispersion characteristics must be defined appropriately. Generally, source term of the radioactive materials is much uncertain at the early phase of an accidental event. In this study, we computed the source rate with the experimental field data monitored at the Yeoung-Kwang nuclear site and obtained the optimal source rate to minimize the errors between the measured concentrations and the computed ones by the Gaussian plume model. Computed source term showed a good result within 24% of the artificially released source rate.

A WSR-88D Radar Observation of Chaff Transport and Diffusion in Clear Sky

  • Lee, Dong-In
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2000
  • To investigate the distribution of air pollutants dispersion in the horizontal wind fields, a chaff release experiment was carried out by an airplane. The temporal and spatial variations of a chaff plume from an elevated point source using the WSR-88D(NEXRAD) radar. The observed profiles of radar reflectivity were compared with the Gaussian diffusion model at slightly unstable atmospheric condition. The present study shows that the distributions of radar reflectivity from chaffs and their concentration by the model are in general agreement with time variation. The dispersion coefficients in downwind($\sigma$(sub)x) and crosswind($\sigma$(sub)y) spread data exceeded what has generally been found at Pasquill and Brigg\`s estimates. As a result, it was clearly shown that horizontal and vertical diffusion coefficients are more accurately determined as compared with theoretical coefficients. At longer diffusion distances(than 10km), a radar observation provided the determination of maximum range and diffusion height more qualitatively, too.

  • PDF

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.