• Title/Summary/Keyword: Gaussian kernel

Search Result 137, Processing Time 0.027 seconds

Gaussian Kernel Smoothing of Explicit Transient Responses for Drop-Impact Analysis (낙하 충격 해석을 위한 명시법 과도응답의 가우스커널 평활화 기법)

  • Park, Moon-Shik;Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.289-297
    • /
    • 2011
  • The explicit finite element method is an essential tool for solving large problems with severe nonlinear characteristics, but its results can be difficult to interpret. In particular, it can be impossible to evaluate its acceleration responses because of severe discontinuity, extreme noise or aliasing. We suggest a new post-processing method for transient responses and their response spectra. We propose smoothing methods using a Gaussian kernel without in depth knowledge of the complex frequency characteristics; such methods are successfully used in the filtering of digital signals. This smoothing can be done by measuring the velocity results and monitoring the response spectra. Gaussian kernel smoothing gives a better smoothness and representation of the peak values than other approaches do. The floor response spectra can be derived using smoothed accelerations for the design.

Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function (가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템)

  • Donghyeon Kim;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • This paper proposes an approach to detect abnormal data in automotive controller area network (CAN) using an unsupervised learning model, i.e. autoencoder and Gaussian kernel density estimation function. The proposed autoencoder model is trained with only message ID of CAN data frames. Afterwards, by employing the Gaussian kernel density estimation function, it effectively detects abnormal data based on the trained model characterized by the optimally determined number of frames and a loss threshold. It was verified and evaluated using four types of attack data, i.e. DoS attacks, gear spoofing attacks, RPM spoofing attacks, and fuzzy attacks. Compared with conventional unsupervised learning-based models, it has achieved over 99% detection performance across all evaluation metrics.

Multi-User Detection using Support Vector Machines

  • Lee, Jung-Sik;Lee, Jae-Wan;Hwang, Jae-Jeong;Chung, Kyung-Taek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1177-1183
    • /
    • 2009
  • In this paper, support vector machines (SVM) are applied to multi-user detector (MUD) for direct sequence (DS)-CDMA system. This work shows an analytical performance of SVM based multi-user detector with some of kernel functions, such as linear, sigmoid, and Gaussian. The basic idea in SVM based training is to select the proper number of support vectors by maximizing the margin between two different classes. In simulation studies, the performance of SVM based MUD with different kernel functions is compared in terms of the number of selected support vectors, their corresponding decision boundary, and finally the bit error rate. It was found that controlling parameter, in SVM training have an effect, in some degree, to SVM based MUD with both sigmoid and Gaussian kernel. It is shown that SVM based MUD with Gaussian kernels outperforms those with other kernels.

Physiological Responses-Based Emotion Recognition Using Multi-Class SVM with RBF Kernel (RBF 커널과 다중 클래스 SVM을 이용한 생리적 반응 기반 감정 인식 기술)

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.364-371
    • /
    • 2013
  • Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Image Denoising via Fast and Fuzzy Non-local Means Algorithm

  • Lv, Junrui;Luo, Xuegang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1108-1118
    • /
    • 2019
  • Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.

Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter (비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법)

  • Lin, Yueqi;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

Driver Verification System Using Biometrical GMM Supervector Kernel (생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술)

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2010
  • This paper presents biometrical driver verification system in car experiment through analysis of speech, and face information. We have used Mel-scale Frequency Cesptral Coefficients (MFCCs) for speaker verification using speech information. For face verification, face region is detected by AdaBoost algorithm and dimension-reduced feature vector is extracted by using principal component analysis only from face region. In this paper, we apply the extracted speech- and face feature vectors to an SVM kernel with Gaussian Mixture Models(GMM) supervector. The experimental results of the proposed approach show a clear improvement compared to a simple GMM or SVM approach.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.