• 제목/요약/키워드: Gaussian kernel

검색결과 137건 처리시간 0.022초

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

엔트로피 가중치와 웨버 법칙을 이용한 세일리언시 검출 (Saliency Detection Using Entropy Weight and Weber's Law)

  • 이호상;문상환;엄일규
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.88-95
    • /
    • 2017
  • 본 논문에서는 웨이블릿 변환 영역에서 엔트로피 가중치와 웨버 대비 도를 이용한 세일리언시 검출 방법을 제안한다. 본 논문의 방법은 기존의 일반적인 방법과 마찬가지로 국부적인 세일리언시를 결정하는 상향식 검출과 전역적인 세일리언시를 구성하는 하향식 검출을 결합하는 구조를 가진다. 먼저, CIE Lab 컬러 영상에 대하여 웨이블릿 변환을 수행하고, 저주파 부밴드에 대하여 웨버 대비도 계산하고 이를 저주파 계수에 부가하여 전역 세일리언시를 구한다. 다음으로, 고주파 부밴드의 엔트로피를 이용한 가중치를 가우시안 필터에 적용하여 국부 세일리언시를 구한다. 마지막으로 국부 세일리언시와 전역 세일리언시의 비선형 결합을 통하여 최종 세일리언시를 검출한다. 제안 방법의 성능 평가를 위해 2개의 영상 데이터베이스에 대하여 모의실험을 수행하였다. 기존의 방법과 비교하여 본 논문의 방법은 우수한 세일리언시 검출 결과를 나타내었다.

Human-Content Interface : A Friction-Based Interface Model for Efficient Interaction with Android App and Web-Based Contents

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.55-62
    • /
    • 2021
  • 본 논문에서는 사용자의 관심영역(Region of interests, ROI)을 마찰력 기반의 스크롤을 통해 데이터를 빠르고 효율적으로 검색할 수 있는 인간-콘텐츠 사이의 새로운 인터페이스를 제안한다. 사용자가 관심이 있는 정보나 콘텐츠를 찾는 행동에서 착안한 우리의 접근 방식은 주어진 콘텐츠에서 ROI를 효율적으로 계산하고, GMM(Gaussian mixture model, 가우시안 혼합 모델)에서 착안해 개발한 커널을 기반으로 사용자가 관심 있어 하는 정보의 위치로 부드럽고 빠르게 화면을 이동시켜 정보를 탐색한다. 본 논문에서는 선형 보간법(Linear interpolation)을 적용하여 한층 부드러운 하나의 관성을 만들고, 이것을 스크롤에 적용한다. 결과적으로 사용자의 입력에 따라 정보가 검색되는 기존의 접근법과는 달리, ROI와 DOI(Degree of interests, 중요도)를 기반으로 마찰력을 제어한다. 제어된 마찰력 기반 스크롤을 통해 사용자가 관심 있어 하는 정보나 콘텐츠를 보다 쉽고 직관적으로 찾아줄 수 있기 때문에 사용자는 탐색 시간을 절약할 수 있다.

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.

공정 모니터링 기술의 최근 연구 동향 (Recent Research Trends of Process Monitoring Technology: State-of-the Art)

  • 유창규;최상욱;이인범
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.233-247
    • /
    • 2008
  • 공정 모니터링 기술은 공정 내에서 일어나는 예상치 못한 조업변화 및 이상을 조기에 감지하고 조업 이상에 영향을 끼친 근본 원인을 밝혀내어 제거해 줌으로써 공정의 안정적인 조업과 양질의 제품생산의 기반을 제공하여 준다. 데이터에 기반한 통계적 공정 모니터링 방법은 양질의 공정 데이터만 주어진다면 통계적 처리를 접목하여 비교적 쉽게 모니터링을 할 수 있고 공정의 데이터 분석에 이용할 수 있는 도구를 얻을 수 있다는 장점이 있다. 그러나 실제 공정에서는 비선형성, non-Gaussianity, 다중 운전모드, 공정상태변화로 인해 기존의 다변량 통계적 방법을 이용한 공정 모니터링 기법은 비효율적이거나, 공정 감시 성능의 저하, 종종 신뢰할 수 없는 결과를 야기한다. 이러한 경우 기존의 방법으로는 더이상 공정을 정확히 감시할 수 없기 때문에 최근에 많은 새로운 방법들이 개발 되었다. 본 총설에서는 이러한 단점을 보안하기 위해 최근 주목할 만한 연구결과인 공정 비선형성을 고려한 커널주성분분석(kernel principle component analysis) 모니터링 기법, 주성분분석 모델 조합을 이용한 다중모델(mixture model) 모니터링 기법, 공정 변화를 고려한 적응모델(adaptive model) 모니터링 기법, 그리고 센서 이상진단과 보정의 이론과 응용결과에 대하여 소개한다.

충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상 (Performance Enhancement of Algorithms based on Error Distributions under Impulsive Noise)

  • 김남용;이규영
    • 인터넷정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.49-56
    • /
    • 2018
  • 오차 신호에 대해 가우시안 커널이 가지는 과도신호 차단효과를 기반으로 설계된 오차분포와 델타함수 사이의 유클리드 거리(ED)가 충격성 잡음하에서 효과적인 성능준거로 사용되어왔다. ED의 최소화 과정에서 필요한 기울기는 두 가지 성분, 즉, 오차 쌍의 커널함수에 대한 성분$A_k$와 오차 샘플 자체의 커널함수에 대한 성분 $B_k$를 가진다. 이 논문에서는 성분 $A_k$가 오차 샘플들을 서로 결집시키는 역할과 관련되어 있으며, 성분 $B_k$는 오차샘플들의 결집위치가 영(0)이 되는 문제와 관련되어 있다고 분석되었다. 이 분석에 기반하여, 이 논문에서는 오차 샘플간 간격을 좁히는 역할을 강화하고자 $A_k$를 커널 통과된 오차쌍의 전력으로 정규화하고, 오차 샘플들을 0점에 당기는 역할을 강화하고자 $B_k$를 커널 통과된 오차샘플 자체의 전력으로 정규화하는 방안을 제안하였다. 충격성 잡음과 다중경로 페이딩 채널 환경하에서 시뮬레이션을 시행하여, 정상상태의 MSE 가지는 흔들림 정도와 최소 MSE 값을 비교 분석하였다. 그 결과, 제안된 방식이 가지는 효용성과 두 성분의 역할이 분석과 일치함이 규명되었다.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • ;고광은;박승민;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출 (Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition)

  • 신민화;박지훈;김홍국;이연우;이성로
    • 말소리와 음성과학
    • /
    • 제2권3호
    • /
    • pp.141-148
    • /
    • 2010
  • In this paper, voice activity detection (VAD) for dual-channel noisy speech recognition is proposed in which spatial cues are employed. In the proposed method, a probability model for speech presence/absence is constructed using spatial cues obtained from dual-channel input signal, and a speech activity interval is detected through this probability model. In particular, spatial cues are composed of interaural time differences and interaural level differences of dual-channel speech signals, and the probability model for speech presence/absence is based on a Gaussian kernel density. In order to evaluate the performance of the proposed VAD method, speech recognition is performed for speech segments that only include speech intervals detected by the proposed VAD method. The performance of the proposed method is compared with those of several methods such as an SNR-based method, a direction of arrival (DOA) based method, and a phase vector based method. It is shown from the speech recognition experiments that the proposed method outperforms conventional methods by providing relative word error rates reductions of 11.68%, 41.92%, and 10.15% compared with SNR-based, DOA-based, and phase vector based method, respectively.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.