• Title/Summary/Keyword: Gaussian fitting

Search Result 95, Processing Time 0.023 seconds

Comparison of Survival Prediction of Rats with Hemorrhagic Shocks Using Artificial Neural Network and Support Vector Machine (출혈성 쇼크를 일으킨 흰쥐에서 인공신경망과 지원벡터기계를 이용한 생존율 비교)

  • Jang, Kyung-Hwan;Yoo, Tae-Keun;Nam, Ki-Chang;Choi, Jae-Rim;Kwon, Min-Kyung;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.47-55
    • /
    • 2011
  • Hemorrhagic shock is a cause of one third of death resulting from injury in the world. Early diagnosis of hemorrhagic shock makes it possible for physician to treat successfully. The objective of this paper was to select an optimal classifier model using physiological signals from rats measured during hemorrhagic experiment. This data set was used to train and predict survival rate using artificial neural network (ANN) and support vector machine (SVM). To avoid over-fitting, we chose the best classifier according to performance measured by a 10-fold cross validation method. As a result, we selected ANN having three hidden nodes with one hidden layer and SVM with Gaussian kernel function as trained prediction model, and the ANN showed 88.9 % of sensitivity, 96.7 % of specificity, 92.0 % of accuracy and the SVM provided 97.8 % of sensitivity, 95.0 % of specificity, 96.7 % of accuracy. Therefore, SVM was better than ANN for survival prediction.

The Algorithm of Protein Spots Segmentation using Watersheds-based Hierarchical Threshold (Watersheds 기반 계층적 이진화를 이용한 단백질 반점 분할 알고리즘)

  • Kim Youngho;Kim JungJa;Kim Daehyun;Won Yonggwan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.239-246
    • /
    • 2005
  • Biologist must have to do 2DGE biological experiment for Protein Search and Analysis. This experiment coming into being 2 dimensional image. 2DGE (2D Gel Electrophoresis : two dimensional gel electrophoresis) image is the most widely used method for isolating of the objective protein by comparative analysis of the protein spot pattern in the gel plane. The process of protein spot analysis, firstly segment protein spots that are spread in 2D gel plane by image processing and can find important protein spots through comparative analysis with protein pattern of contrast group. In the algorithm which detect protein spots, previous 2DGE image analysis is applies gaussian fitting, however recently Watersheds region based segmentation algorithm, which is based on morphological segmentation is applied. Watersheds has the benefit that segment rapidly needed field in big sized image, however has under-segmentation and over-segmentation of spot area when gray level is continuous. The drawback was somewhat solved by marker point institution, but needs the split and merge process. This paper introduces a novel marker search of protein spots by watersheds-based hierarchical threshold, which can resolve the problem of marker-driven watersheds.

Gaussian Noise Reduction Method using Adaptive Total Variation : Application to Cone-Beam Computed Tomography Dental Image (적응형 총변이 기법을 이용한 가우시안 잡음 제거 방법: CBCT 치과 영상에 적용)

  • Kim, Joong-Hyuk;Kim, Jung-Chae;Kim, Kee-Deog;Yoo, Sun-K.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.29-38
    • /
    • 2012
  • The noise generated in the process of obtaining the medical image acts as the element obstructing the image interpretation and diagnosis. To restore the true image from the image polluted from the noise, the total variation optimization algorithm was proposed by the R.O. F (L.Rudin, S Osher, E. Fatemi). This method removes the noise by fitting the balance of the regularity and fidelity. However, the blurring phenomenon of the border area generated in the process of performing the iterative operation cannot be avoided. In this paper, we propose the adaptive total variation method by mapping the control parameter to the proposed transfer function for minimizing boundary error. The proposed transfer function is determined by the noise variance and the local property of the image. The proposed method was applied to 464 tooth images. To evaluate proposed method performance, PSNR which is a indicator of signal and noise's signal power ratio was used. The experimental results show that the proposed method has better performance than other methods.

Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera (저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정)

  • Kim, Seo Woo;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2018
  • The precision of the vibration-sensors, contact or non-contact types, is usually satisfactory for the practical measurement applications, but a sensor is confined to the measurement of a point or a direction. Although the precision and frequency span of the low-cost camera are inferior to these sensors, it has the merits in the cost and in the capability of simultaneous measurement of a large vibrating area. Furthermore, a camera can measure multi-degrees-of-freedom of a vibrating object simultaneously. In this study, the calibration method and the dynamic characteristics of the low-cost machine vision camera as a sensor are studied with a demonstrating example of the two-dimensional vibration of a cantilever beam. The planar image of the camera shot reveals two rectilinear and one rotational motion. The rectilinear vibration motion of a single point is first measured using a camera and the camera is experimentally calibrated by calculating error referencing the LDV (Laser Doppler Vibrometer) measurement. Then, by measuring the motion of multiple points at once, the rotational vibration motion and the whole vibration motion of the cantilever beam are measured. The whole vibration motion of the cantilever beam is analyzed both in time and frequency domain.

Development of Gated Myocardial SPECT Analysis Software and Evaluation of Left Ventricular Contraction Function (게이트 심근 SPECT 분석 소프트웨어의 개발과 좌심실 수축 기능 평가)

  • Lee, Byeong-Il;Lee, Dong-Soo;Lee, Jae-Sung;Chung, June-Key;Lee, Myung-Chul;Choi, Heung-Kook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.73-82
    • /
    • 2003
  • Objectives: A new software (Cardiac SPECT Analyzer: CSA) was developed for quantification of volumes and election fraction on gated myocardial SPECT. Volumes and ejection fraction by CSA were validated by comparing with those quantified by Quantitative Gated SPECT (QGS) software. Materials and Methods: Gated myocardial SPECT was peformed in 40 patients with ejection fraction from 15% to 85%. In 26 patients, gated myocardial SPECT was acquired again with the patients in situ. A cylinder model was used to eliminate noise semi-automatically and profile data was extracted using Gaussian fitting after smoothing. The boundary points of endo- and epicardium were found using an iterative learning algorithm. Enddiastolic (EDV) and endsystolic volumes (ESV) and election fraction (EF) were calculated. These values were compared with those calculated by QGS and the same gated SPECT data was repeatedly quantified by CSA and variation of the values on sequential measurements of the same patients on the repeated acquisition. Results: From the 40 patient data, EF, EDV and ESV by CSA were correlated with those by QGS with the correlation coefficients of 0.97, 0.92, 0.96. Two standard deviation (SD) of EF on Bland Altman plot was 10.1%. Repeated measurements of EF, EDV, and ESV by CSA were correlated with each other with the coefficients of 0.96, 0.99, and 0.99 for EF, EDV and ESV respectively. On repeated acquisition, reproducibility was also excellent with correlation coefficients of 0.89, 0.97, 0.98, and coefficient of variation of 8.2%, 5.4mL, 8.5mL and 2SD of 10.6%, 21.2mL, and 16.4mL on Bland Altman plot for EF, EDV and ESV. Conclusion: We developed the software of CSA for quantification of volumes and ejection fraction on gated myocardial SPECT. Volumes and ejection fraction quantified using this software was found valid for its correctness and precision.