• Title/Summary/Keyword: Gaussian Normal Basis

Search Result 18, Processing Time 0.025 seconds

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

Fault Detection Architecture of the Field Multiplication Using Gaussian Normal Bases in GF(2n (가우시안 정규기저를 갖는 GF(2n)의 곱셈에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su;Park, Young Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this paper, we proposed an error detection in Gaussian normal basis multiplier over $GF(2^n)$. It is shown that by using parity prediction, error detection can be very simply constructed in hardware. The hardware overheads are only one AND gate, n+1 XOR gates, and one 1-bit register in serial multipliers, and so n AND gates, 2n-1 XOR gates in parallel multipliers. This method are detect in odd number of bit fault in C = AB.

Analysis of Exposure Doses and Determination of Atmospheric Diffusion Coefficients (피폭선량 해석과 대기확산계수 결정)

  • Kim, Byung-Woo;Han, Moon-Hwee;Lee, Young-Bok;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 1984
  • The exposure doses by the radioactive gaseous effluents from nuclear power plants are investigated in the two cases of normal operation and hypothetical accident. Gaussian equation is adapted in the normal operation as the diffusion model of effluents for long period, which uses annual average meteorological data. But the real time models have been used in the case of accidents which analyze the changes of wind direction and speed. In this study the annual exposure doses by the normal operation of Kori unit 1 during $1977{\sim}1982$ were calculated on the basis of the atmospheric diffusion factor by the Gaussian straight line model. And the image processing technique was suggested as the effective method through the wind tunnel experiments to get the characteristic value of atmospheric diffusion coefficient required especially in the accidents of nuclear power plants.

  • PDF

Optimized Channel Coding of Control Channels for Mobile Packet Communication

  • Song, Young-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • This paper proposes a coding scheme of control channel for mobile packet communication to maximize the minimum Hamming distance, which is based on shifting of basis vectors of Reed Muller code with optimized dynamic puncturing and/or(partial) sequence repetition. Since the maximum likelihood decoding can be performed using the extremely simple FHT(Fast Hadamard Transformation), it is suitable for real time optimum decoding of control channel information with very little complexity. We show applications of the proposed coding method to TFCI(Transport Format Combination Indicator) code in split and normal modes of 3GPP W-CDMA system. We also discuss how this method can reduce rate indication error over AWGN(Additive White Gaussian Noise) as well as fading channels when the proposed coding scheme is applied to 1xEV-DV system of $3^{rd}$TEX> generation partnership project 2(3GPP2) to indicate the data rate transmitted on the reverse traffic channel by a Mobile Station(MS).

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.

Modified SMPO for Type-II Optimal Normal Basis (Type-II 최적 정규기저에서 변형된 SMPO)

  • Yang Dong-Jin;Chang Nam-Su;Ji Sung-Yeon;Kim Chang-Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Cryptographic application and coding theory require operations in finite field $GF(2^m)$. In such a field, the area and time complexity of implementation estimate by memory and time delay. Therefore, the effort for constructing an efficient multiplier in finite field have been proceeded. Massey-Omura proposed a multiplier that uses normal bases to represent elements $CH(2^m)$ [11] and Agnew at al. suggested a sequential multiplier that is a modification of Massey-Omura's structure for reducing the path delay. Recently, Rayhani-Masoleh and Hasan and S.Kwon at al. suggested a area efficient multipliers for modifying Agnew's structure respectively[2,3]. In [2] Rayhani-Masoleh and Hasan proposed a modified multiplier that has slightly increased a critical path delay from Agnew at al's structure. But, In [3] S.Kwon at al. proposed a modified multiplier that has no loss of a time efficiency from Agnew's structure. In this paper we will propose a multiplier by modifying Rayhani-Masoleh and Hassan's structure and the area-time complexity of the proposed multiplier is exactly same as that of S.Kwon at al's structure for type-II optimal normal basis.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.