The Journal of Korean Institute of Communications and Information Sciences
/
v.5
no.1
/
pp.34-39
/
1980
This paper discribes a effect of Radio signals in Noise and Interference for the Communication systems and Generation of diffusion Noise from the Solid state Devices, and in Jection it to the Radio Reciving systems for probability of Signal Detection. The error performance depends on level of the Noise spectral density by Random processes between average signal energy. This experimental result are given by the performance of the correlation receiver for detecting Completely known signals in additive white Gaussian Noise.
Journal of the Korea Society of Computer and Information
/
v.4
no.2
/
pp.120-134
/
1999
Image processing steps consist of image acquisition, pre-processing, region segmentation and recognition, and the images are easily corrupted by noise during the data transmission, data capture, and data processing. Impulse noise and gaussian noise are major noises, which can occur during the process. Many filters such as mean filter, median filter, weighted median filter, Cheikh filter, and Kyu-cheol Lee filter were proposed as spatial noise reduction filters so far. Many researches have been focused on the reduction of impulse noise, but comparatively the research in the reduction of gaussian noise has been neglected. For the reduction of gaussian noise, subset averaged median filter, using median information and subset average information of pixels in a window. was proposed. At this time, consider of the window size as 3$^{*}$3 pixel. The window is divided to 4 subsets consisted of 4 pixels. First of all, we calculate the average value of each subset, and then find the median value by sorting the average values and center pixel's value. In this paper, a better reduction of gaussian noise was proved. The proposed algorithms were implemented by ANSI C language on a Sun Ultra 2 for testing purposes and the effects and results of the filter in the various levels of noise and images were proposed by comparing the values of PSNR, MSE, and RMSE with the value of the other existing filtering methods.thods.
This paper presents perceptual model with a stochastic rnultiresolution characteristic that can be applied with watermark embedding in the biorthogonal wavelet domain. The perceptual model with adaptive watermarking algorithm embed at the texture and edge region for more strongly embedded watermark by the SSQ(successive subband quantization). The watermark embedding is based on the computation of a NVF(noise visibility function) that have local image properties. This method uses non-stationary Gaussian model stationary Generalized Gaussian model because watermark has noise properties. In order to determine the optimal NVF, we consider the watermark as noise. The particularities of embedding in the stationary GG model use shape parameter and variance of each subband regions in multiresolution. To estimate the shape parameter, we use a moment matching method. Non-stationary Gaussian model use the local mean and variance of each subband. The experiment results of simulation were found to be excellent invisibility and robustness. Experiments of such distortion are executed by Stirmark benchmark test.
Methods of detecting, describing, matching image features, like corners and blobs, have been actively studied as a fundamental step for image processing and computer vision applications. As one of feature description/matching methods, LLAH(Locally Likely Arrangement Hashing) describes image features based on the geometric relationship between their neighbors, and thus is suitable for scenes with poor texture. This paper presents a modified LLAH algorithm, which includes the image features themselves for robustly describing the geometric relationship unlike the original LLAH, and employes a voting-based feature matching scheme that makes feature description much simpler. Then, this paper quantitatively analyzes its performance with synthetic images in the presence of Gaussian noise.
The purpose of the work is to present successful applications of a modified wavelet shrinkage method for the accurate and fast estimation of a transfer function. Although the experimental process of determining a transfer function introduces not only Gaussian but also non-Gaussian noises, most existing estimation methods are based only on a Gaussian noise model. To overcome this limitation, we propose to employ a modified wavelet shrinkage method in which L1 -based median filtering and L2 -based wavelet shrinkage are applied repeatedly. The underlying theory behind this approach is briefly explained and the superior performance of this modified wavelet shrinkage technique is demonstrated by a numerical example.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.25
no.5
/
pp.73-78
/
2011
We developed a noise reduction algorithm for the measurement accuracy improvement of a fiber-optic distributed temperaure sensor system. The denoising technique is based on the wavelet transform. The proposed algorithm was applied to a FBG sensor output with the Gaussian line-fitting algorithm to minimize the output noise which originated from the intensity noise of the laser light source and the instability of signal porcessing. We confirmed the feasibility of the denoising algorithm by comparing the measurement results with those obtained with the Gaussian line-fitting algorithm only.
Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.87-92
/
2023
With the continuous development of the speech recognition system, the recognition rate for speech has developed rapidly, but it has a disadvantage in that it cannot accurately recognize the voice due to the noise generated by mixing various voices with the noise in the use environment. In order to increase the vocabulary recognition rate when processing speech with environmental noise, noise must be removed. Even in the existing HMM, CHMM, GMM, and DNN applied with AI models, unexpected noise occurs or quantization noise is basically added to the digital signal. When this happens, the source signal is altered or corrupted, which lowers the recognition rate. To solve this problem, each voice In order to efficiently extract the features of the speech signal for the frame, the MFCC was improved and processed. To remove the noise from the speech signal, the noise removal method using the Gaussian model applied noise deviation estimation was improved and applied. The performance evaluation of the proposed model was processed using a cross-correlation coefficient to evaluate the accuracy of speech. As a result of evaluating the recognition rate of the proposed method, it was confirmed that the difference in the average value of the correlation coefficient was improved by 0.53 dB.
The Journal of Korean Institute of Communications and Information Sciences
/
v.14
no.3
/
pp.280-292
/
1989
In this paper, the error rate equations of digitally modulated signals transmitted through the channel which is not only Gaussian/Impulsive noise but also multi-path fading have been derived. Using the derived equations for the error probabilities of ASK, QAM, CPSK, DPSK, FSK, and MSK signals, the error rate performances of digital modulation systems have been evaluated and represented in the graphs as the functions of CNR, Impulsive indes, the ratio of Gaussian noise power component to Impulsive noise power component, and fading figures. The results show that, in the deep fading environment, the error is occurred more frequency by Gaussian noise than Impulsive noise. And the comparison of various systems certifies that PSK is superior to the ohter systems in the deep fading or shallow fading environment.
In this paper, we propose the improved noise power estimation in speech enhancement under various noise environments. The previous MS algorithm tracking the minimum value of finite search window uses the optimal power spectrum of signal for smoothing and adopts minimum probability. From the investigation of the previous MS-based methods it can be seen that a fixed size of the minimum search window is assumed regardless of the various environment. To achieve the different search window size, we use the noise classification algorithm based on the Gaussian mixture model (GMM). Performance of the proposed enhancement algorithm is evaluated by ITU-T P.862 perceptual evaluation of speech quality (PESQ) under various noise environments. Based on this, we show that the proposed algorithm yields better result compared to the conventional MS method.
Journal of the Institute of Convergence Signal Processing
/
v.14
no.3
/
pp.169-180
/
2013
The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.