• Title/Summary/Keyword: Gaussian Noise

Search Result 1,215, Processing Time 0.029 seconds

A study of Development of Transmission Systems for Terrestrial Single Channel Fixed 4K UHD & Mobile HD Convergence Broadcasting by Employing FEF (Future Extension Frame) Multiplexing Technique (FEF (Future Extension Frame) 다중화 기법을 이용한 지상파 단일 채널 고정 4K UHD & 이동 HD 융합방송 전송시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.310-339
    • /
    • 2015
  • In this paper, the possibility of a terrestrial fixed 4K UHD (Ultra High Definition) and mobile HD (High Definition) convergence broadcasting service through a single channel employing the FEF (Future Extension Frame) multiplexing technique in DVB (Digital Video Broadcasting)-T2 (Second Generation Terrestrial) systems is examined. The performance of such a service is also investigated. FEF multiplexing technology can be used to adjust the FFT (fast Fourier transform) and CP (cyclic prefix) size for each layer, whereas M-PLP (Multiple-Physical Layer Pipe) multiplexing technology in DVB-T2 systems cannot. The convergence broadcasting service scenario, which can provide fixed 4K UHD and mobile HD broadcasting through a single terrestrial channel, is described, and transmission requirements of the SHVC (Scalable High Efficiency Video Coding) technique are predicted. A convergence broadcasting transmission system structure is described by employing FEF and transmission technologies in DVB-T2 systems. Optimized transmission parameters are drawn to transmit 4K UHD and HD convergence broadcasting by employing a convergence broadcasting transmission structure, and the reception performance of the optimized transmission parameters under AWGN (additive white Gaussian noise), static Brazil-D, and time-varying TU (Typical Urban)-6 channels is examined using computer simulations to find the TOV (threshold of visibility). From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static fixed and very fast fading multipath channel.

Introductions of Pre-Rake with Frequency Domain Equalizer and Cyclic Prefix Reduction Method in CDMA/TDD Multi-code Transmission (CDMA/TDD 다중코드 전송에서 주파수 도메인 등화기와 결합된 Pre-Rake 와 Cyclic Prefix 최소화 방법)

  • Lee, Jun-Hwan;Jeong, In-Cheol
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • In this paper we propose a Pre-rake system applied with a frequency domain equalizer in TDD/CDMA multi-code transmission. The Pre-rake system has been well known technique in TDD/CDMA to make a receiver simple. However, it still has residual losses of path diversity and signal to noise ratio (SNR). However, gathering all the residual paths demands an additional hardware such as a rake combiner at the receiver. For the reason Pre/Post-rake system has already been proposed at up/downlink correlated channel conditionunder the assumption of noisier channel. There is a trade-off between the first purpose of Pre-rake that makes hardware simple at the receiver and the performance improvement. From the point the frequency domain equalizer (FDE) can be considered in Pre/Post-rake to supply the receiver with the flexible equalizing methods with rather reduced complexity compared with time domain rake combiner or equalizers. Pre-rake itself increases the number of multipath, which results from the convolution of Pre-rake filter and wireless channel, and FDE must be well matched to Pre/Post-rake, while it considers the relationship of hardware complexity and the performance. In this paper, the Pre-rake/Post-FDE system is introduced at TDD/CDMA multi-code transmission. In addition, the cyclic prefix reduction method in the proposed system is introduced, and the theoretical analysis to the proposed system is given by assuming Gaussian approximation, and finally the numerical simulation results are provided.

Transmission Probability of Car-to-Car Message Delivery Link based on Visible Light Communications (광무선통신기술을 이용한 차량간 메시지전달링크의 링크전송확률 분석)

  • Kang, Moon-Soo;Lee, Chung-Ghiu
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.752-758
    • /
    • 2011
  • In this paper, we perform a research on a message delivery link based on visible light communication using illumination light-emitting diodes (LEDs) for car-to-car communications and the link transmission success probability is analyzed for the link. The message delivery system is modeled and the signal-to-noise ratio is calculated from the received optical power. Then, the link transmission probability is estimated from the calculated bit error rates (BERs). The message delivery system has optical links from an LED transmitter near the rear lamp of a car ahead to a receiver near the headlamp of a car behind, whose positions are assumed to follow the normal Gaussian distribution. The link transmission success probability is calculated considering the physical characteristics of the optical link. The car positions are generated according to the normal distribution and the bit error rates are calculated for all links. The link transmission success probability is defined. For the unoptimized optical car-to-car message delivery links, it is shown that the link transmission success probability is larger than 0.9 with the transmitted optical power of 400 mW and the semi-angle at half power of 30 degree.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

The Study on Speaker Change Verification Using SNR based weighted KL distance (SNR 기반 가중 KL 거리를 활용한 화자 변화 검증에 관한 연구)

  • Cho, Joon-Beom;Lee, Ji-eun;Lee, Kyong-Rok
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.159-166
    • /
    • 2017
  • In this paper, we have experimented to improve the verification performance of speaker change detection on broadcast news. It is to enhance the input noisy speech and to apply the KL distance $D_s$ using the SNR-based weighting function $w_m$. The basic experimental system is the verification system of speaker change using GMM-UBM based KL distance D(Experiment 0). Experiment 1 applies the input noisy speech enhancement using MMSE Log-STSA. Experiment 2 applies the new KL distance $D_s$ to the system of Experiment 1. Experiments were conducted under the condition of 0% MDR in order to prevent missing information of speaker change. The FAR of Experiment 0 was 71.5%. The FAR of Experiment 1 was 67.3%, which was 4.2% higher than that of Experiment 0. The FAR of experiment 2 was 60.7%, which was 10.8% higher than that of experiment 0.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Enhancement of the Deformable Image Registration Accuracy Using Image Modification of MV CBCT (Megavoltage Cone-beam CT 영상의 변환을 이용한 변환 영상 정합의 정확도 향상)

  • Kim, Min-Joo;Chang, Ji-Na;Park, So-Hyun;Kim, Tae-Ho;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • To perform the Adaptive Radiation Therapy (ART), a high degree of deformable registration accuracy is essential. The purpose of this study is to identify whether the change of MV CBCT intensity can improve registration accuracy using predefined modification level and filtering process. To obtain modification level, the cheese phantom images was acquired from both kilovoltage CT (kV CT), megavoltage cone-beam CT (MV CBCT). From the cheese phantom images, the modification level of MV CBCT was defined from the relationship between Hounsfield Units (HUs) of kV CT and MV CBCT images. 'Gaussian smoothing filter' was added to reduce the noise of the MV CBCT images. The intensity of MV CBCT image was changed to the intensity of the kV CT image to make the two images have the same intensity range as if they were obtained from the same modality. The demon deformable registration which was efficient and easy to perform the deformable registration was applied. The deformable lung phantom which was intentionally created in the laboratory to imitate the changes of the breathing period was acquired from kV CT and MV CBCT. And then the deformable lung phantom images were applied to the proposed method. As a result of deformable image registration, the similarity of the correlation coefficient was used for a quantitative evaluation of the result was increased by 6.07% in the cheese phantom, and 18% in the deformable lung phantom. For the additional evaluation of the registration of the deformable lung phantom, the centric coordinates of the mark which was inserted into the inner part of the phantom were measured to calculate the vector difference. The vector differences from the result were 2.23, 1.39 mm with/without modification of intensity of MV CBCT images, respectively. In summary, our method has quantitatively improved the accuracy of deformable registration and could be a useful solution to improve the image registration accuracy. A further study was also suggested in this paper.

A PN-code Acquisition method Using Array Antenna Systems for CDMA2000 1x (CDMA2000 1x용 배열 안테나 시스템에서 PN 동기 획득 방법)

  • Jo, Hee-Nam;Yun, Yu-Suk;Choi, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.33-40
    • /
    • 2005
  • This paper presents a structure of the searcher using a diversity in array antenna systems operating in the cdma2000 1x signal environments. The new technique exploits the fact that the In-phase and quadrature components of interferers can respectively be viewed as an independent gaussian noise at each antnna element in most practical cdma signal environments. The proposed PN acquisition scheme is a singles-dwell PN acquisition system consisting of two stages, that is, the searching stage and the verification stage. The searching stage independently correlates the receiver multiple signals with PN generator of each antenna element for obtaining the synchronous energy at the entire region. Then, the searching results of each antenna element are non-coherently combinind. The verification stage compares the searching energy with the optimal threshold, which is predesigned in the lock detector, and decides whether the acquisition is successful or fail. In this paper, we analyzed the effect of tile diversity order to determine the mean acquisition time. In general, it is known that the mean acquisition time significantly decrease as the number of antenna elements increases. But, as the diversity order goes up, the enhancement of the performance is saturated. Therefore, to decrease the mean acquisition time of the searcher, we must design the optimal array antenna systems by considering the operating SNR range of the receiver, the probability of detection $P_D$ and that of false alarm $P_{FA}$ . The Performance of the proposed PN acquisition scheme is analyzed in frequency selective Rayleigh fading channels. In this paper, the effect of the number of antenna elements on PN acquisition scheme is shown according to the probability of detection $P_D$ and that of false alarm $P_{FA}$.

$\pi$/4 shift QPSK with Trellis-Code in Rayleigh Fading Channel (레일레이 페이딩 채널에서 Trellis 부호를 적용한 $\pi$/4 shift QPSK)

  • 김종일;이한섭;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.30-38
    • /
    • 1992
  • In this paper, in order to apply the $\pi$/4 shift QPSK to TCM, we propose the $\pi$/8 shift 8PSK modulation technique and the trellis-coded $\pi$/8 shift 8PSK performing signal set expansion and set partition by phase difference. In addition, the Viterbi decoder with branch metrics of the squared Euclidean distance of the first phase difference as well as the Lth phase difference is introduced in order to improve the bit error rate(BER) performance in differential detection of the trellis-coded $\pi$/8 shift 8 PSK. The proposed Viterbi decoder is conceptually the same as the sliding multiple de- tection by using the branch metric with first and Lth order phase difference. We investigate the performance of the uncoded .pi. /4 shift QPSK and the trellis-coded $\pi$/8 shift 8PSK with or without the Lth phase difference metric in an additive white Gaussian noise (AWGN) and Rayleigh fading channel using the Monte Carlo simulation. The study shows that the $\pi$/4 shift QPSK with the Trellis-code i. e. the trellis-coded $\pi$/8 shift 8PSK is an attractive scheme for power and bandlimited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance. Also, the next proposed algorithm can be used in the TC $\pi$/8 shift 8PSK as well as TC MDPSK.

  • PDF

A Study of Development of Transmission Systems for Next-generation Terrestrial 4K UHD & HD Convergence Broadcasting (차세대 지상파 4K UHD & HD 융합방송을 위한 전송 시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSub;Kim, YongHwan;Paik, JongHo;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.767-788
    • /
    • 2014
  • The worldwide transition from analog to digital broadcasting has now been completed and the need to study next generation standards for Ultra High Definition TV (UHDTV) broadcasting, and broadcasting & communication convergence systems is rapidly growing. In particular, high resolution mobile broadcasting services are needed to satisfy recent consumers. Therefore, the development of highly efficient convergence broadcasting systems that provide fixed/mobile broadcasting through a single channel is needed. In this paper, a service scenario and requirements for providing 4K UHD & HD convergence broadcasting services through a terrestrial single channel are analyzed by employing the latest transmission and A/V codec technologies. Optimized transmission parameters for 6 MHz & 8 MHz terrestrial bandwidths are drawn, and receiving performances are measured under Additive White Gaussian Noise (AWGN) and time-varying multipath channels. From the results, in a 6 MHz bandwidth, the reliable receiving of HD layer data can be achieved when the receiver velocity is maximum 140 Km/h and is not achieved when the velocity is over 140 Km/h due to the limit of bandwidth. When the bandwidth is extended to 8 MHz, the reliable receiving of both 4K UHD and HD layer data is achieved under a very fast fading multipath channel.