• 제목/요약/키워드: Gaussian Networks

검색결과 248건 처리시간 0.027초

CONSTRUCTIVE APPROXIMATION BY GAUSSIAN NEURAL NETWORKS

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.341-349
    • /
    • 2012
  • In this paper, we discuss a constructive approximation by Gaussian neural networks. We show that it is possible to construct Gaussian neural networks with integer weights that approximate arbitrarily well for functions in $C_c(\mathbb{R}^s)$. We demonstrate numerical experiments to support our theoretical results.

비가우시안 노이즈가 존재하는 수중 환경에서 MBK 시스템의 위치 추정 (Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks)

  • 이대희;양연모;허경무
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.232-238
    • /
    • 2013
  • 본 논문은 노이즈가 비 정규 분포를 따르는 수중 환경에서 비 선형 필터 기법에 따른 Mass-Damper-Spring (MBK) 시스템 위치추정에 관한 연구 내용이다. 최근 위치 추정에 사용되는 필터는 확장 칼만 필터 (EKF: Extended Kalman Filter) 와 파티클 필터(Particle Filter)가 주목 받고 있다. EKF는 가우시안 잡음 (Gaussian Noise) 이 존재하는 비선형 시스템에서 정확도가 높은 알고리즘으로 널리 사용되고 있지만, 수중 환경과 같이 비 가우시안 잡음이 존재하는 경우 사용에 많은 제약이 따른다. 이에 본 논문에서는 상태예측을 기반으로 둔 EKF와 비교하여, 통계적 발생 가능성 인자 (Maximum Likelihood) 에 기반한 분포 재해석 기법을 이용한 개선된 ODPF (One-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 non-Gaussian noise가 존재하는 수중 환경에서 EKF와 제안한 Particle filter를 사용한 위치 추정 결과를 비교 분석하였으며, 계산 용량 및 통계 샘플이 충분한 경우 ODPF가 EKF 대비 정확한 위치 추정 결과를 제공하는 것을 확인하였다.

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법 (Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks)

  • 박상봉;박래정;박철훈
    • 한국통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2418-2425
    • /
    • 1994
  • 기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.

  • PDF

DZDC Coefficient Distributions for P-Frames in H.264/AVC

  • Wu, Wei;Song, Bin
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.814-817
    • /
    • 2011
  • In this letter, the distributions of direct current (DC) coefficients for P-frames in H.264/AVC are analyzed, and the distortion model of the Gaussian source under the quantization of the dead-zone plus-uniform threshold quantization with uniform reconstruction quantizer is derived. Experimental results show that the DC coefficients of P-frames are best approximated by the Laplacian distribution and the Gaussian distribution at small quantization step sizes and at large quantization step sizes, respectively.

Multivariate Gaussian 함수를 이용한 센서 네트워크의 수화 인식에의 적용 (Application of Sensor Network Using Multivariate Gaussian Function to Hand Gesture Recognition)

  • 김성호;한윤종;디아코네스쿠 보그다나
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.991-995
    • /
    • 2005
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as health, environment and habitat monitoring, military, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modern teaming techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes haying the capability of simple processing and wireless communication. The proposed system is able to perform classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to hand gesture recognition system.

Multivariate Gaussian Function을 이용한 지능형 집진기 운전상황 모니터링 시스템 개발 (Development of An Operation Monitoring System for Intelligent Dust Collector By Using Multivariate Gaussian Function)

  • 한윤종;김성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.470-472
    • /
    • 2006
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as environment and health, industry scene system monitoring, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modem learning techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes having the capability of simple processing and wireless communication. The proposed system is able to perform context classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to intelligent dust collecting system.

  • PDF

비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정 (Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks)

  • 이대희;양연모
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.418-422
    • /
    • 2013
  • 본 논문은 비가우시안 노이즈가 존재하는 수중환경에서 비선형 필터 기법에 따른 2차원 위치 추정에 관한 연구 내용이다. 최근 위치 추정을 위한 필터로 확장형 칼만필터(EKF: Extended Kalman filter)가 많이 사용되고 있다. 하지만, 수중과 같은 비가우시안 노이즈가 존재하는 비선형 시스템에서는 많은 문제점을 가지고 있다. 따라서 본 논문에서는 상태변이의 예측을 기반으로한 EKF를 대신하여 통계적 발생인자 에 기반을 둔 분포 재해석 기법을 이용한 2차원 파티클필터 (TDPF: Two-Dimension Particle Filter)를 제안한다. 모의 실험을 통하여 Non-Gaussian Noise 가 존재하는 수중환경에서 제안하는 TDPF의 성능을 EKF와 비교분석하였으며 TDPF가 EKF보다 정확한 위치 추정결과를 제공하는 것을 확인하였다.

가우스 요소함수 망에 기초한 재밍 파라미터 추정 (Estimation of Jamming Parameters based on Gaussian Kernel Function Networks)

  • 황태현;길이만;이현구;김정호;고재헌;조제일;이정훈
    • 한국군사과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Effective jamming in electronic warfare depends on proper jamming technique selection and jamming parameter estimation. For this purpose, this paper proposes a new method of estimating jamming parameters using Gaussian kernel function networks. In the proposed approach, a new method of determining the optimal structure and parameters of Gaussian kernel function networks is proposed. As a result, the proposed approach estimates the jamming parameters in a reliable manner and outperforms other methods such as the DNN(Deep Neural Network) and SVM(Support Vector Machine) estimation models.

웨이블릿 네트워크를 이용한 압전 구동기의 견실제어 (Robust Control of Piezo Actuator using Wavelet Networks)

  • 양창관;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.723-725
    • /
    • 2004
  • An iterative robust control design for PZT using Gaussian wavelet networks is proposed. A Gaussian wavelet network with accurate approximation capability is employed to approximate the nonlinear hysteresis dynamics of PZT systems by using an iterative control algorithm. Depending on the finite number of wavelet basis functions which results in unavoidable approximation errors, a robust control law is provided to guarantee the stability of the closed-loop nano positioning system. Finally, the effectiveness of the robust control approach is illustrated through comparative simulations on a PZT.

  • PDF