연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
이 논문은 피하산란의 정도가 다를 것으로 예상되는 얼굴의 6개의 부위를 촬영하여 각각의 산란특성을 추출하고 렌더링에 반영하여 얼굴의 사실감 있는 표현이 가능한 방법을 제안한다. 각 부위별 산란이미지는 프로젝터로부터 피부에 입사된 단위광선이 내부 산란을 거쳐 밖으로 드러나는 모양을 여러 노출로 촬영하여 HDR 이미지로 합성하고, 비선형 최소제곱합의 해법 중 Sequential Quadratic Programming을 이용하여 광선의 입사지점을 지나는 단면이 이루는 곡선에 '가우스 함수의 선형결합'을 적합한다. 가우스 함수는 산란곡선을 잘 근사하면서 필터로서 적용이 쉬운 장점을 가진다. 우리는 최소제곱합의 해가 지역 해에 빠지는 않도록 유전알고리듬을 이용해 초기 값을 설정한다. 근사된 식의 각 가우스 항은 얼굴에 입사되는 복사조도를 렌더링한 텍스처에 가우스 필터로 적용되어 피하산란효과를 표현. 이 논문에서는 최대 12회의 가우스 필터링을 효율적으로 처리하기 위해 쿠다의 병렬처리능력를 활용하였다.
In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.
연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.
최근 CAM[1]을 이용해서 이미지의 객체에 대한 주의 영역 또는 지역화(Localization) 영역을 찾는 방법이 WSOL의 연구로서 다양하게 수행되고 있다. CAM을 이용한 객체의 히트(Heat) 맵에서 주의 영역 추출은 객체의 특징이 가장 많이 모여 있는 영역만을 주로 집중해서 객체의 전체적인 영역을 찾지 못하는 단점이 있다. 여기서는 이를 개선하기 위해서 먼저 CAM과 Selective Search[6]를 함께 이용하여 CAM 히트맵의 주의 영역을 확장하고, 확장된 영역에 가우시안 스무딩을 적용하여 재학습 데이터를 만든 후, 이를 학습하여 객체의 주의 영역이 확장되는 방법을 제안한다. 제안 방법은 단 한 번의 재학습만이 필요하며, 학습 후 지역화를 수행할 때는 Selective Search를 실행하지 않기 때문에 처리 시간이 대폭 줄어든다. 실험에서 기존 CAM의 히트맵들과 비교했을 때 핵심 특징 영역으로부터 주의 영역이 확장되고, 확장된 주의 영역 바운딩 박스에 대한 Ground Truth와의 IOU 계산에서 기존 CAM보다 약 58%가 개선되었다.
위성 원격 탐사에서는 센서 운영 환경으로 인하여 영상을 수집하는 동안 영상의 질 저하가 일어나며 이러한 영상의 질 저하는 관측된 자료로부터 유용한 정보를 확인하거나 추출하는 데 악 영향을 미치는 번짐 현상(blurring)과 잡음 (noise)을 야기시킨다. 특히 이러한 질 저하는 도시 지역과 같은 조밀한 구조를 가지는 scene으로부터 관측된 영상 자료의 분석에 더욱 영향을 끼친다. 본 연구는 고해상도 범색 영상 자료의 질 저하 현상을 개선시켜 영상이 포함하고 있는 복잡한 구조에 대한 자세한 분석의 정확성을 제고하기 위한 다중 단계 영상 복원 과정을 제안한다. 본 연구는 질 저하 현상을 모형화 하기 위해 Gaussian 가산 잡음과 Markov random field로 정의되는 공간적 연결성, 중심 화소와 이웃 화소 간의 거리에 비례하는 번짐을 가정하였다. 본 연구는 잡음 완화와 번짐 제거를 위해 Point-Jacobian Iteration Maximum A Posteriori (PJI-MAP) 추정 법을 제안한다. 그리고 화소 연결 후 지역 확장을 통한 영상 분할을 사용하였다. 본 연구는 지역 확장을 위하여 동질성과 대조성을 동시에 고려하는 비유사 계수를 제안하고 있다. 본 연구에서는 모의 자료 실험을 통하여 정량적 평가를 실시하였으며 2 개의 고해상도 범색 영상 자료에 대해 적용하여 복원의 효과에 대해 실험하였다. 사용된 원격 탐사 자료는 1 m급의 미국 LA지역에서 수집된 Dubaisat -2 자료와 0.7 m급의 한반도 대전 지역에서 수집된 KOMPSAT3 자료이다. 실험 결과는 제안된 다중 단계 복원 과정이 고해상 자료의 복잡한 구조의 자세한 분석에서 정확성 향상에 기여할 수 있다는 것을 보여주고 있다.
본 논문에서는 가상환경에서 페인트를 분사하여 시간으로 물체를 도색 하는 시뮬레이션을 위한 충돌처리 및 시각화 알고리즘을 제시한다. 이를 통하여 물체에 페인트가 뿌려지면서 도색 되는 모습을 사실적으로 표현해 줄뿐만 아니라, 페인트 누적 모델을 이용하여 물체에 누적된 페인트의 두께 정보까지 시뮬레이션 하여 시각화함으로써 가상훈련 시스템에 적용할 수 있도록 한다. 분사되는 유체시뮬레이션을 위해서 기존에는 파티클 시스템이 이용되고 있으나 실시간으로 도색이 되는 과정을 시각화하기 위해서는 수백만 개의 파티클에 대하여 충돌 검사를 수행해야 하기 때문에 적절하지 않다. 따라서 본 연구에서는 소수의 레이와 텍스처 기법을 이용하여 효율적으로 충돌 검사를 수행하는 알고리즘을 제안하고 이를 구현하였으며 실시간 페인트 시뮬레이션 구현 결과와 수행 시간 분석을 통하여 알고리즘의 효율성을 검증하였다.
본 논문에서는 extrinsic information transfer (EXIT) chart를 이용하여 다중 안테나 시스템에서 irregular low-density parity-check (LDPC) code를 설계하는 방법을 기술한다. 다중 안테나 기반의 Irregular LDPC code 설계를 위하여 maximum a posteriori probability (MAP) 방식의 다중 안테나 검출 방식이 사용되었으며 수신기는 다중 안테나 검출기와 LDPC 복호기 사이에서 복호된 soft 정보를 주고 받는 turbo iterative 구조를 가정하였다. 다중 안테나 기반의 irregular LDPC code의 edge degree 분포는 EXIT chart와 linear optimization programming 기법을 사용하여 얻을 수 있으며 컴퓨터 시뮬레이션을 통하여 제안된 방법으로 설계된 irregular LDPC code의 성능을 다양한 환경에서 검증하였다.
본 논문은 MR 영상의 비지도 분할을 위하여 MDL원리를 이용한 통계적 모델기반의 적응적 방법을 제안한다. 이 방법에서 조직 영역을 MRF로 모델링함으로써 잡음에 대응하고, 창으로 정의되는 국소영역 내의 밝기값을 가우스 혼합으로 모델링함으로써 영상의 비균일성을 흡수한다. 분할 알고리즘은 ICM을 기반으로 하며 MAP를 근사적으로 추정하고, 모델 파라미터를 국소영역으로부터 구한다. 파라미터 추정과 분할을 위한 창의 크기는 MDL원리를 이용하여 영상으로부터 추정한다. 실험에서 제안한 방법이 특히 비균일성이 있는 MR영상의 분할에서 국소영역의 영상특성을 잘 반영하였으며, 기존의 방법보다 더 좋은 결과를 보여주었다.
International Journal of Control, Automation, and Systems
/
제4권6호
/
pp.736-747
/
2006
Simultaneous Localization and Map Building(SLAM) is one of the fundamental problems in robot navigation. The Extended Kalman Filter(EKF), which is widely adopted in SLAM approaches, requires extensive computation. The conventional particle filter also needs intense computation to cover a high dimensional state space with particles. This paper proposes an efficient SLAM method based on the recursive unscented Kalman filtering in an environment including a large number of landmarks. The posterior probability distributions of the robot pose and the landmark locations are represented by their marginal Gaussian probability distributions. In particular, the posterior probability distribution of the robot pose is calculated recursively. Each landmark location is updated with the recursively updated robot pose. The proposed method reduces filtering dimensions and computational complexity significantly, and has produced very encouraging results for navigation experiments with noisy multiple simultaneous observations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.