• Title/Summary/Keyword: Gaussian Filter

Search Result 515, Processing Time 0.039 seconds

High Noise Density Median Filter Method for Denoising Cancer Images Using Image Processing Techniques

  • Priyadharsini.M, Suriya;Sathiaseelan, J.G.R
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.308-318
    • /
    • 2022
  • Noise is a serious issue. While sending images via electronic communication, Impulse noise, which is created by unsteady voltage, is one of the most common noises in digital communication. During the acquisition process, pictures were collected. It is possible to obtain accurate diagnosis images by removing these noises without affecting the edges and tiny features. The New Average High Noise Density Median Filter. (HNDMF) was proposed in this paper, and it operates in two steps for each pixel. Filter can decide whether the test pixels is degraded by SPN. In the first stage, a detector identifies corrupted pixels, in the second stage, an algorithm replaced by noise free processed pixel, the New average suggested Filter produced for this window. The paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. In this paper the comparison of known image denoising is discussed and a new decision based weighted median filter used to remove impulse noise. Using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Structure Similarity Index Method (SSIM) metrics, the paper examines the performance of Gaussian Filter (GF), Adaptive Median Filter (AMF), and PHDNF. A detailed simulation process is performed to ensure the betterment of the presented model on the Mini-MIAS dataset. The obtained experimental values stated that the HNDMF model has reached to a better performance with the maximum picture quality. images affected by various amounts of pretend salt and paper noise, as well as speckle noise, are calculated and provided as experimental results. According to quality metrics, the HNDMF Method produces a superior result than the existing filter method. Accurately detect and replace salt and pepper noise pixel values with mean and median value in images. The proposed method is to improve the median filter with a significant change.

The effective noise reduction method in infrared image using bilateral filter based on median value

  • Park, Chan-Geun;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.27-33
    • /
    • 2016
  • In this paper, we propose the bilateral filter based on median value that can reduce random noise and impulse noise with minimal loss of contour information. In general, EO / IR camera to generate a random or impulse noise due to a number of reasons. This noise reduces the performance of detecting and tracking by signal processing. To reduce noise, our proposed bilateral filter sorts the values of the target pixel and the peripheral pixels, and extracts a median filter coefficients of the Gaussian type. Then to extract the Gaussian filter coefficient involved with the distance between the center pixel and the surrounding pixels. As using those filter coefficients, our proposed method can remove the various noise effectively while minimizing the loss of the contour information. To validate our proposed method, we present experimental results for several IR images.

Performance Comparison of Some Image Restoration Filter for Various Noises (각종 잡음에 대한 영상복원 필터들의 성능 비교)

  • 김남철;정성환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.493-503
    • /
    • 1987
  • Performances of some image restoration filters are compared and evaluated on SNR gain and subjective test. Test images used here are the GIRL and PLANT images corrupted by Gaussian, uniform, BSC, and impulse noise, respectively. Experimental results show that the scalar DCT-Wiener filter among them is comparatively superior to others in Gaussian and uniform noise. On the other hand, the median filter is much better than others in BSC and impulse noise.

  • PDF

Assessment of Spatial Filter for Gaussian Beam (가우시안빔에 대한 공간파수여과기 성능평가)

  • 홍경희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.76-80
    • /
    • 1989
  • Spatial filters were designed for 1 TW high power phosphate glass laser development. Laser beam should be expanded from 1 mm diameter to 200mm diameter. Pin hole size should be determined and most of incident energy should be transmitted through out to final spatial filter. Each pin hole size is determined by calculating encircled energy for Gaussian beam from the oscillator. The optical tube length of each spatial filter is corrected to have the best collimating quality by scew raytracing through the total system.

  • PDF

An Adaptive Noise Detection and Modified Gaussian Noise Removal Using Local Statistics for Impulse Noise Image (국부 통계 특성을 이용한 임펄스 노이즈 영상의 적응적 노이즈 검출 및 변형된 형태의 Gaussian 노이즈 제거 기법)

  • Nguyen, Tuan-Anh;Song, Won-Seon;Hong, Min-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.179-181
    • /
    • 2009
  • In this paper, we propose an adaptive noise detection and modified Gaussian removal algorithm using local statistics for impulse noise. In order to determine constraints for noise detection, the local mean, variance, and maximum values are used. In addition, a modified Gaussian filter that integrates the tuning parameter to remove the detected noises. Experimental results show that our method is significantly better than a number of existing techniques in terms of image restoration and noise detection.

  • PDF

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

METHOD FOR REAL-TIME EDGE EXTRACTION USING HARDWARE OF LATERAL INHIVITION TYPE OF SPATIAL FILTER

  • Serikawa, Seiichi;Morita, Kazuhiro;Shimomura, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.236-239
    • /
    • 1995
  • It is useful to simulate the human visual function for the purpose of image-processing. In this study, the hardware of the spatial filter with the sensitivity of lateral inhibition is realized by the combination of optical parts with electronic circuits. The diffused film with the characteristics of Gaussian type is prepared as a spatial filter. An object's image is convoluted with the spatial filter. From the difference of the convoluted images, the zero-cross position is detected at video rate. The edge of object is extracted in real-time by the use of this equipment. The resolution of edge changes with the value of the standard deviation of diffused film. In addition, it is possible to extract a directional edge selectively when the spatial filter with directional selectivity is used instead of Gaussian type of spatial filter.

  • PDF

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.

Contrast Enhancement Algorithm for Backlight Images using by Linear MSR (선형 MSR을 이용한 역광 영상의 명암비 향상 알고리즘)

  • Kim, Beom-Yong;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • In this paper, we propose a new algorithm to improve the contrast ratio, to preserve information of bright regions and to maintain the color of backlight image that appears with a great relative contrast. Backlight images of the natural environment have characteristics for difference of local brightness; the overall image contrast improvement is not easy. To improve the contrast of the backlight images, MSR (Multi-Scale Retinex) algorithm using the existing multi-scale Gaussian filter is applied. However, existing multi-scale Gaussian filter involves color distortion and information loss of bright regions due to excessive contrast enhancement and noise because of the brightness improvement of dark regions. Moreover, it also increases computational complexity due to the use of multi-scale Gaussian filter. In order to solve these problems, a linear MSR is performed that reduces the amount of computation from the HSV color space preventing the color distortion and information loss due to excessive contrast enhancement. It can also remove the noise of the dark regions which is occurred due to the improved contrast through edge preserving filter. Through experimental evaluation of the average color difference comparison of CIELAB color space and the visual assessment, we have confirmed excellent performance of the proposed algorithm compared to conventional MSR algorithm.

Survey of nonlinear state estimation in aerospace systems with Gaussian priors

  • Coelho, Milca F.;Bousson, Kouamana;Ahmed, Kawser
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.495-516
    • /
    • 2020
  • Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards on performance in these applications, in the last few decades, there was an increasing demand for methods that are able to provide more accurate results. However, because of the mathematical complexity introduced by the nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-established which, leads to sub-optimal results. It is important to take into account that each method will have advantages and limitations when facing specific environments. The main objective of this paper is to provide a comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective.