• Title/Summary/Keyword: Gaussian Detection

Search Result 557, Processing Time 0.025 seconds

High Speed Face Detection Using Skin Color (살색을 이용한 고속 얼굴검출 알고리즘의 개발)

  • 한영신;박동식;이칠기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.173-176
    • /
    • 2002
  • This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.

  • PDF

Object Detection Based on Hellinger Distance IoU and Objectron Application (Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.

An Approximate Gaussian Edge Detector (근사적 가우스에지 검출기)

  • 정호열;김회진;최태영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.709-718
    • /
    • 1992
  • A new edge detection operator superimposing two displaced Gaussian smoothing filters Is proposed as an approximate operator for the DroG(flrst derivative of Gaussian) known as a sub-op-timal step edge detector. The performance of the proposed edge detector Is very close to that of the DroG with the performance criteria . signal to noise ratio, locality, and multiple response. And the computational complexity can be reduced almost by a half of that of DroG, because of the use of common 2-D smoothing filter for DroG and LoG ( Laplacian of Gausslan) systems.

  • PDF

Performance Analysis of M-ayy PPM Ultra-wideband Multiple Access Systems Using Gaussian Monopulse (가우시안 모노펄스를 이용하는 M-ary PPM 초광대역 다중접속시스템의 성능해석)

  • Kwak, Jae-Min;Lee, Sung-Chul;Cho, Sarm-Goo;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-233
    • /
    • 2003
  • In this paper we theoretically analyze the probability of error for M-ary pulse position modulation (PPM) ultra-wideband (UWB) multiple access system using Gaussian monopulse. The optimum detection of UWB signals using M-ary orthogonal PPM in additive white Gaussian noise (AWGN) and multiple access interference (MAI) is considered, then receiver signal to noise power ratio (SNR) and upper bound fur the bit error rate (BER) are derived. Numerical results considering some practical parameters are presented.

  • PDF

Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model (클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출)

  • Park, Jong-Hyun;Lee, Gee-Sang;Toan, Nguyen Dinh;Cho, Wan-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • A real-time detection and tracking of moving objects in video sequences is very important for smart surveillance systems. In this paper, we propose a novel algorithm for the detection of moving objects that is the entropy-based adaptive Gaussian mixture model (AGMM). First, the increment of entropy generally means the increment of complexity, and objects in unstable conditions cause higher entropy variations. Hence, if we apply these properties to the motion segmentation, pixels with large changes in entropy in moments have a higher chance in belonging to moving objects. Therefore, we apply the Clausius entropy theory to convert the pixel value in an image domain into the amount of energy change in an entropy domain. Second, we use an adaptive background subtraction method to detect moving objects. This models entropy variations from backgrounds as a mixture of Gaussians. Experiment results demonstrate that our method can detect motion object effectively and reliably.

Data Detection Algorithm Based on GMM in the Acoustic Data Transmission System (음향 데이터 전송 시스템의 강인한 데이터 검출 성능을 위한 Gaussian Mixture Model 기반 연구)

  • Song, Ji-Hyun;Chang, Joon-Hyuk;Kim, Moon-Kee;Kim, Dong-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2011
  • In this paper, we propose an approach to improve the data detection performance of the acoustic data transmission system based on the modulated complex lapped transform (MCLT). We first present an effective analysis of the features and the detection method of data in the acoustic data transmission system. And then feature vectors which are applied to the Gaussian mixture model (GMM) are selected from relevant parameters of the previous system for the efficient data detection. For the purpose of evaluating the performance of the proposed algorithm, Bit error rate (BER) of the received data was measured at different environments (music genres (rock, pop, classic, jazz) and different distances (1m∼5m) from the loudspeaker to the microphone in a office room) and yields better results compared with the conventional scheme of the acoustic data transmission system based on the MCLT.

A Hardware Implementation of EGML-based Moving Object Detection Algorithm (EGML 기반 이동 객체 검출 알고리듬의 하드웨어 구현)

  • Kim, Gyeong-hun;An, Hyo-sik;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2380-2388
    • /
    • 2015
  • A hardware implementation of MOD(moving object detection) algorithm using EGML(effective Gaussian mixture learning)- based background subtraction to detect moving objects in video is described. Some approximations of EGML calculations are applied to reduce hardware complexity, and pipelining technique is adopted to improve operating speed. The MOD processor designed in Verilog-HDL has been verified by FPGA-in-the-loop verification using MATLAB/Simulink. The MOD processor has 2,218 slices on the Virtex5-XC5VSX95T FPGA device and its throughput is 102 MSamples/s at 102 MHz clock frequency. Evaluation results of the MOD processor for 12 images in the IEEE CDW-2012 dataset show that the average recall value is 0.7631, the average precision value is 0.7778 and the average F-measure value is 0.7535.

A fixed-point implementation and performance analysis of EGML moving object detection algorithm (EGML 이동 객체 검출 알고리듬의 고정소수점 구현 및 성능 분석)

  • An, Hyo-sik;Kim, Gyeong-hun;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2153-2160
    • /
    • 2015
  • An analysis of hardware design conditions of moving object detection (MOD) algorithm is described, which is based on effective Gaussian mixture learning (EGML). A simulation model of EGML algorithm is implemented using OpenCV, and the effects of some parameter values on background learning time and MOD sensitivity are analyzed for various images. In addition, optimal design conditions for hardware implementation of EGML-based MOD algorithm are extracted from fixed-point simulations for various bit-widths of parameters. The proposed fixed-point model of the EGML-based MOD uses only half of the bit-width at the expense of the loss of MOD performance within 0.5% when compared with floating-point MOD results.

Fault Detection Architecture of the Field Multiplication Using Gaussian Normal Bases in GF(2n (가우시안 정규기저를 갖는 GF(2n)의 곱셈에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su;Park, Young Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this paper, we proposed an error detection in Gaussian normal basis multiplier over $GF(2^n)$. It is shown that by using parity prediction, error detection can be very simply constructed in hardware. The hardware overheads are only one AND gate, n+1 XOR gates, and one 1-bit register in serial multipliers, and so n AND gates, 2n-1 XOR gates in parallel multipliers. This method are detect in odd number of bit fault in C = AB.

Automated Vessels Detection on Infant Retinal Images

  • Sukkaew, Lassada;Uyyanonvara, Bunyarit;Barman, Sarah A;Jareanjit, Jaruwat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.321-325
    • /
    • 2004
  • Retinopathy of Prematurity (ROP) is a common retinal neovascular disorder of premature infants. It can be characterized by inappropriate and disorganized vessel. This paper present a method for blood vessel detection on infant retinal images. The algorithm is designed to detect the retinal vessels. The proposed method applies a Lapalacian of Gaussian as a step-edge detector based on the second-order directional derivative to identify locations of the edge of vessels with zero crossings. The procedure allows parameters computation in a fixed number of operations independent of kernel size. This method is composed of four steps : grayscale conversion, edge detection based on LOG, noise removal by adaptive Wiener filter & median filter, and Otsu's global thresholding. The algorithm has been tested on twenty infant retinal images. In cooperation with the Digital Imaging Research Centre, Kingston University, London and Department of Opthalmology, Imperial College London who supplied all the images used in this project. The algorithm has done well to detect small thin vessels, which are of interest in clinical practice.

  • PDF