• Title/Summary/Keyword: Gauss elimination method

Search Result 24, Processing Time 0.018 seconds

Research on Teaching of Linear Algebra Focused on the Solution in the System of Linear Equations (선형방정식계의 해법을 중심으로 한 선형대수에서의 교수법 연구)

  • Kang, Sun-Bu;Lee, Yong-Kyun;Cho, Wan-Young
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.323-335
    • /
    • 2010
  • Linear algebra is not only applied comprehensively in the branches of mathematics such as algebra, analytics, and geometry but also utilized for finding solutions in various fields such as aeronautical engineering, electronics, biology, geology, mechanics and etc. Therefore, linear algebra should be easy and comfortable for not only mathematics majors but also for general students as well. However, most find it difficult to learn linear algebra. Why is it so? It is because many studying linear algebra fail to achieve a correct understanding or attain erroneous concepts through misleading knowledge they already have. Such cases cause learning disability and mistakes. This research suggests more effective method of teaching by analyzing difficulty and errors made in learning system of linear equations.

  • PDF

Characteristics of Harbor Resonance in Donghae Harbor (Part 2. Numerical Calculation) (동해항(東海港)의 부진동(副振動) 특성(特性)(2. 수치계산(數値計算)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1993
  • A numerical model has been used for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident waves. Based on linear wave theory a mild-slope equation has been used. A partial absorbing boundary condition has been used on solid boundary. Functional has been derived following Chen and Mei(l974)'s technique based on Hybrid Element Method which uses finite discretisation in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equation has been solved using the Gaussian Elimination Method. Helmholtz natural period and second peak period of seiche in Donghae Harbor coincide very well with the results from numerical calculation. Computed amplification factors show good agreement, especially when the reflection coefficient on solid boundary is 0.99, with those of measurements.

  • PDF

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.