• 제목/요약/키워드: Gastrointestinal transit

검색결과 87건 처리시간 0.026초

Effects of Cassia obtusifolia L. Extract on Loperamide-Induced Constipation in Rats

  • Jang, Seung-hee;Kim, Min-jeong;Wee, Ji-hyang;Kim, Eun-jeong;Kim, Gye-yeop;Hwang, Su-jin;Choi, Won-hee
    • 한국식품영양학회지
    • /
    • 제31권5호
    • /
    • pp.640-646
    • /
    • 2018
  • Cassia obtusifolia L. is commonly used as medicinal foods to treat gastrointestinal disease in many countries. This study evaluated the anti-constipation effects of ethanolic extract of Cassia obtusifolia L. in rats with loperamide-induced constipation. Diffferent concentrations of ethanolic extract of Cassia obtusifolia L. (0, 10, 250, and 500 mg/kg) was administered to rat orally once daily for 3 weeks following loperamide treatment. Six-week-old Sprague-Dawley rats (N=25) were randomly divided into five groups: normal control and experimental groups and injected loperamide intraperitoneally to induce constipation in the latter four experimental groups. Following the induction of loperamide-induced constipation, a marked decrease was observed in the fecal weight and water content discharged for over 1 week and intestinal transit time while an increase was observed in the number of fecal pellets remaining in the colonic lumen as compared with the normal control group. These conditions were significantly alleviated following the administration of the two doses (250 and 500 mg/kg) of ethanolic extract of Cassia obtusifolia L. when compared to the loperamide-treated (constipation control) group. More specifically, the number of fecal pellets in the colon was 3, 5, 4, 2.8, and 1.2 in the five groups, respectively and the corresponding GIT ratio was 70.77, 56.59, 58.67, 66.81, and 72.10%, respectively. The fecal water content, transit distance, and GIT ratio in the high-dose treatment group were significantly higher than that in the medium-dose treatment group, but a significant decrease in the number of fecal pellets in the colon. In conclusion, the Cassia obtusifolia L. extract is suggested to have beneficial effects as a therapeutic and preventive strategy to alleviate constipation and to relieve the symptoms of constipation such as pain, flatulence, distention, bloating, and unpleasant taste.

Loperamide로 유도된 변비모델에서 Lactobacillus casei에 의해 발효된 볶은 결명자 물 추출물의 효과 (Effect of Roasted Water Extract of Fermented Cassia tora L. by Lactobacillus casei on the Loperamide-Induced Constipation Model in Rats.)

  • 노종현;정호경;이무진;장지훈;심미옥;정자균;이기호;안병관;조정희;장민철;용주현;조현우
    • 한국약용작물학회지
    • /
    • 제24권6호
    • /
    • pp.471-478
    • /
    • 2016
  • Background: Constipation is one of the most common functional gastrointestinal disorder. The present study examined the ability of water extract of fermented (FRC) and non-fermented (NFRC) roasted Cassia tora to improve intestinal function and reduce constipation in a rat constipation model. Methods and Results: Different concentration of FRC and NFRC were orally administered loperamide (5 mg/kg; LOP) reduced the number, weight, and water content of feces, as well as intestinal transit motility. However, 24 h-(24 hour fermented roasted-Cassia tora) 300 mg/kg FRC administration increased the number, weight, and water concent of feces, compared to that seen in the LOP group, and also improve intestinal transit mitility and, the thickness of distal colon and mucous fluid. Conclusions: The results of the present study indicated that LOP-induced constipation was improved by treatment with FRC. Therefore FRC could be used to develop functional foods or natural medicine for constipation. However, further study is needed to clarify how fermentation improves the medicinal properties of roasted C. tora.

Role of High-affinity Choline Transporter 1 in Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome

  • Lin, Meng-juan;Yu, Bao-ping
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.643-655
    • /
    • 2018
  • Background/Aims Irritable bowel syndrome (IBS) is a common disease characterized by intestinal dysmotility, the mechanism of which remains elusive. We aim to determine whether the high-affinity choline transporter 1 (CHT1), a determinant of cholinergic signaling capacity, modulates intestinal motility associated with stress-induced IBS. Methods A rat IBS model was established using chronic water avoidance stress (WAS). Colonic pathological alterations were evaluated histologically and intestinal motility was assessed by intestinal transit time and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response to colorectal distension. RT-PCR, western blotting, and immunostaining were performed to identify colonic CHT1 expression. Contractility of colonic muscle strips was measured using isometric transducers. enzyme-linked immunosorbent assay was used to measure acetylcholine (ACh). We examined the effects of MKC-231, a choline uptake enhancer, on colonic motility. Results After 10 days of WAS, intestinal transit time was decreased and fecal water content increased. Visceromotor response magnitude in WAS rats in response to colorectal distension was significantly enhanced. Protein and mRNA CHT1 levels in the colon were markedly elevated after WAS. The density of CHT1-positive intramuscular interstitial cells of Cajal and myenteric plexus neurons in WAS rats was higher than in controls. Ammonium pyrrolidine dithiocarbamate partly reversed CHT1 upregulation and alleviated colonic hypermotility in WAS rats. Pharmacological enhancement of CHT1 activity by MKC-231 enhanced colonic motility in control rats via upregulation of CHT1 and elevation of ACh production. Conclusion Upregulation of CHT1 in intramuscular interstitial cells of Cajal and myenteric plexus neurons is implicated in chronic stress-induced colonic hypermotility by modulation of ACh synthesis via nuclear factor-kappa B signaling.

Effect of Lactobacillus casei fermented Senna tora L. seeds and its active compound via muscarinic M3 signaling on the improvement of intestinal function in rats

  • Jang, Ji-Hun;Lee, Ki-Ho;Nho, Jong-Hyun;Lee, Hyun-Joo;Yang, Beo-Dul;Park, Ho;Cho, Hyun-Woo;An, Byeong-Kwan;Kim, Sun-Ra;Yong, Ju-Hyun;Park, Ro-Dong;Jung, Ho-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.365-373
    • /
    • 2020
  • We previously reported the potential of Senna tora L. seeds fermented by Lactobacillus casei (FSL) as a laxative agent in a loperamide-induced constipation rat model. Here, we examine the mechanism of action of FSL and its bioactive compound, revealed herein, on loperamide-induced constipation Sprague Dawley rat model. We identified the compound aurantio-obtusin (AO) using HPLC quantitative analysis. Rats were randomly assigned to six experimental groups (eight rats each)-normal and constipated groups (loperamide, FSL [100, 300, 500 mg/kg], and AO [1 mg/kg]). The FSL and AO-treated group showed an increase in the frequency, amount, and water content of feces in the constipated rat. Moreover, FSL and AO increased the intestinal transit speed in the constipated rat. Histological analysis revealed that FSL and AO recovered the intestinal mucus, the number of goblet cells, as well as thickness of the mucosa layer and muscle. Furthermore, the protein levels of the muscarinic acetylcholine receptor M3, which is involved in intestine contraction, were recovered in the FSL and AO-treated group. Its downstream signaling pathway (p-protein kinase C) was recovered by FSL and AO treatment. In conclusion, fermentation of S. tora L. seeds increases AO, which improves intestinal function, indicating that FSL is effective for treating constipation.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine

  • Kim, Hyun Jung;Kim, Byung Joo
    • Integrative Medicine Research
    • /
    • 제6권2호
    • /
    • pp.149-155
    • /
    • 2017
  • Background: Naringenin (NRG) is a common dietary polyphenolic constituent of fruits. NRG has diverse pharmacological activities, and is used in traditional medicine to treat various diseases including gastrointestinal (GI) disorders. Interstitial cells of Cajal (ICCs) are pacemaker cells of the GI tract. In this study, the authors investigated the effects of NRG on ICCs and on GI motility in vitro and in vivo. Methods: ICCs were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICC clusters. The effects of NRG on GI motility were investigated by calculating percent intestinal transit rates (ITR) using Evans blue in normal mice. Results: NRG inhibited ICC pacemaker potentials in a dose-dependent manner. In the presence of tetraethylammonium chloride or iberiotoxin, NRG had no effect on pacemaker potentials, but it continued to block pacemaker potentials in the presence of glibenclamide. Preincubation with SQ-22536 had no effect on pacemaker potentials or on their inhibition by NRG. However, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one blocked pacemaker potential inhibition by NRG. In addition, L-NG-nitroarginine methyl ester blocked pacemaker potential inhibition by NRG. Furthermore, NRG significantly suppressed murine ITR enhancement by neostigmine in vivo. Conclusion: This study shows NRG dose-dependently inhibits ICC pacemaker potentials via a cyclic guanosine monophosphate/nitric oxide-dependent pathway and $Ca^{2+}$-activated $K^+$ channels in vitro. In addition, NRG suppressed neostigmine enhancement of ITR in vivo.

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease

  • Liu, Yang;Li, Yifeng;Yu, Xinjie;Yu, Leilei;Tian, Fengwei;Zhao, Jianxin;Zhang, Hao;Zhai, Qixiao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.92-103
    • /
    • 2021
  • Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.

Antioxidant and laxative effects of taurine-xylose, a synthetic taurine-carbohydrate derivative, in loperamide-induced constipation in Sprague-Dawley rats

  • Jo, Hee Geun;Kim, Min Ji;Moon, Bo Yeong;Cheong, Sun Hee
    • 운동영양학회지
    • /
    • 제23권4호
    • /
    • pp.6-13
    • /
    • 2019
  • [Purpose] In this study, we examined the in vitro antioxidant activities and laxative effects of taurine-xylose (T-X), a synthetic taurine-carbohydrate derivative, in a rat model of constipation induced by loperamide. [Methods] The animals were divided into four treatment groups: normal untreated rats (NOR group), loperamide-treated control rats (CON group), loperamide and taurine-xylose (15 mg/kg)-treated rats (T-X group), and loperamide and commercial Dulcolax S (5.5 mg/kg)-treated rats (DS group). [Results] In the present study, T-X exhibited potent reducing power and free radical scavenging activities for DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS+ (2,2'-azino-bis (3-ethylbenzothiazoline 6-sulfonic acid ammonium salt) radicals. The laxative effects of T-X were dependent on food, body weight, fecal properties, gastrointestinal transit (GIT) ratio, and serum metabolic parameters. In the T-X group, the number, wet weight, and water content of fecal pellets were noticeably increased compared to those in the loperamide-induced group. T-X treatment significantly increased the activities of hepatic antioxidant enzymes, including those of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), relative to those in loperamide-induced constipated rats. Furthermore, the GIT ratio and loperamide-induced metabolic parameters in serum, including gastrin (GAS), motilin (MTL), and somatostatin (SS) levels, were significantly improved by T-X treatment. [Conclusion] These results suggest that taurine-xylose exerts antioxidant activities and laxative effects on loperamide-induced constipation by promoting gastrointestinal motility.

흑효모 유래 Polycan의 TNF-α 유도 장 상피세포 염증 및 Loperamide 유도 변비 모델에 미치는 효과 (Effects of Polysaccharide (Polycan) derived from Black Yeast in TNF-α-induced Inflammation in the Intestinal Epithelial Cells and Loperamide-induced Constipation Models)

  • 김영숙;구본화;조민정;권정희;이선민;오태우
    • 대한한의학방제학회지
    • /
    • 제32권3호
    • /
    • pp.297-310
    • /
    • 2024
  • Objective : This study was conducted to investigate the anti-inflammatory and laxative effects of Polycan in TNF-α-treated HT-29 intestinal epithelial cells and loperamide-induced constipation in vivo models, respectively. Methods : To evaluate the anti-inflammatory effects of Polycan, HT-29 cells were treated with TNF-α in the presence or absence of Polycan. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). MAPK phosphorylation, nuclear translocation of NF-κB, and phosphorylation of IκB were assessed by Western blot analysis. To investigate the laxative effects of Polycan, 6-week-old SD rats (8 female rats per group) were orally administered Polycan or Chicory Fiber as a positive control for 4 weeks, and constipation was induced with loperamide treatment for 10 days before sacrifice. One day before sacrifice, a charcoal meal was administered to evaluate intestinal transit times. The periodically collected feces were used to assess the number of fecal pellets and fecal water content. Results : Polycan inhibited TNF-α-induced IL-8 expression in dose-dependent manner. Furthermore, Polycan suppressed TNF-α-induced phosphorylation of MAPKs (ERK1/2, p38 and JNK), degradation of Iκ-Bα and nuclear translocation of NF-κB. In an in vivo constipation model, the number of fecal pellets per food intake was significantly increased in rats administered with Polycan, both 1 day and 7 days after loperamide treatment. The water content of fecal pellets was restored in the Polycan groups starting 7 days after loperamide treatment. In addition, Polycan intake significantly enhanced the gastrointestinal transit ratio of a charcoal meal but reduced the number of intestinal fecal pellets. Conclusions : These results suggest that Polycan suppressed TNF-α-induced inflammation by blocking both the MAPK and NF-κB pathways in HT-29 cells. Additionally, in a loperamide-induced constipation model, Polycan showed clear laxative effects by increasing the number of fecal pellets, fecal water content, and intestinal transit ratio of a charcoal meal.

『상한론(傷寒論)』 처방에서 감초(甘草) 용량의 안전성 및 임상 사용에 대한 문헌 고찰 (A Study for Safe Dose and Clinical Use of Glycyrrhizae Radix in Shanghanlun)

  • 김형섭;이숭인
    • 대한상한금궤의학회지
    • /
    • 제8권1호
    • /
    • pp.1-23
    • /
    • 2016
  • Objectives : The purpose of this paper is to find out the safe dose and clinical use for administration of Glycyrrhizae Radix in Shanghanlun(傷寒論). Methods : Web-databases(OASIS, NDSL, Pubmed, Google) were searched with keywords including 'Licorice', 'Pseudoaldosteronism', 'Glycyrrhizin', 'Testosterone' on 14/10/2016. The searched about 40 papers and books were reveiwed. Results : Glycyrrhizin(GL) and 3-monoglucuronyl glycyrrhetinic acid(3MGA) in Glycyrrhizae Radix are found to be the main compounds vulnerable for inducing pseudoaldosteronism. The dose range of Glycyrrhizae Radix in Shanghanlun prescriptions is from 0.25 g to 12 g as a daily administration, and this dose satisfies the guidelines of WHO, European Union, ABC etc. And risk factors contributing for personal sensitivities are old age(>60), female sex, liver dysfunction, hypokalemia, prolonged gastrointestinal transit time, anorexia nervosa, decreased 11-${\ss}$-hydroxysteroid dehydrogenase-2 activity and hypertension. Conclusions : As a result, dose of Glycyrrhizae Radix in Shanghanlun(傷寒論) is safe. However, the personal sensitivity and unexpected drug interactions are independent from doses of GL, so doctors should monitor those risk factors and symptoms of pseudoaldosteronism when administering Glycyrrhizae Radix.