• Title/Summary/Keyword: Gastrointestinal physiology

Search Result 152, Processing Time 0.021 seconds

Ardipusilloside-I stimulates gastrointestinal motility and phosphorylation of smooth muscle myosin by myosin light chain kinase

  • Xu, Zhili;Liang, Hanye;Zhang, Mingbo;Tao, Xiaojun;Dou, Deqiang;Hu, Liping;Kang, Tingguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • Ardipusilloside-I is a natural triterpenoid saponin, which was isolated from Ardisia pusilla A. DC. The aim of the study was to evaluate the stimulation of ardipusilloside-I on gastrointestinal motility in vitro and in vivo. The experiment of smooth muscle contraction directly monitored the contractions of the isolated jejunal segment (IJS) in different contractile states, and the effects of ardipusilloside-I on myosin were measured in the presence of $Ca^{2+}$-calmodulin using the activities of 20 kDa myosin light chain ($MLC_{20}$) phosphorylation and myosin $Mg^{2+}$-ATPase. The effects of ardipusilloside-I on gastro emptying and intestinal transit in constipation-predominant rats were observed, and the MLCK expression in jejuna of constipated rats was determined by western blot. The results showed that, ardipusilloside-I increased the contractility of IJS in a dose-dependent manner and reversed the low contractile state (LCS) of IJS induced by low $Ca^{2+}$, adrenaline, and atropine respectively. There were synergistic effects on contractivity of IJS between ardipusilloside-I and ACh, high $Ca^{2+}$, and histamine, respectively. Ardipusilloside-I could stimulate the phosphorylation of $MLC_{20}$ and $Mg^{2+}$-ATPase activities of $Ca^{2+}$- dependent phosphorylated myosin. Ardipusilloside-I also stimulated the gastric emptying and intestinal transit in normal and constipated rats in vivo, respectively, and increased the MLCK expression in the jejuna of constipation-predominant rats. Briefly, the findings demonstrated that ardipusilloside-I could effectively excite gastrointestinal motility in vitro and in vivo.

The Role of Mitochondrial ATP-sensitive Potassium Channel on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. In the present study, we investigated the effect of mitochondrial ATP-sensitive potassium (mitoKATP) channel on pacemaking activity in cultured ICCs from murine small intestine by using whole-cell patch clamp techniques. Under current clamp mode, at 10μM glibenclamide, there was no change in pacemaking activity of ICCs. At $30{\mu}M$ glibenclamide, an inhibitor of the ATP sensitive $K^+$ channels, we could find two examples. If pacemaking activity of ICCs was irregulating, pacemaking activity of ICCs was changed into regulating and if in normal conditions, membrane potential amplitude was increased. At $50{\mu}M$ glibenclamide, the resting membrane potential was depolarized. At 3mM 5-HDA, an inhibitor of the mitoKATP channels, inhibited the pacemaking activity of ICCs. Both the amplitude and the frequency were decreased. At 5 mM 5-HDA, both the amplitude and the frequency were completely abolished. Diazoxide, an opener of the mitoKATP channels, was applied to examine its effect on pacemaking activity of ICCs. At $50{\mu}M$ concentration, the pacemaking activity of ICCs was inhibited. Both the amplitude and the frequency were decreased. At 1 mM concentration, both the amplitude and the frequency were completely abolished and the resting membrane potential was shaked.These results indicate that mitoKATP channel has an important role in pacemaking activity of ICCs.

Implications of Children's Pure-Yang Characters (소아 순양의 의미)

  • Kim Su Mee;Lee Choong Yeal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.381-388
    • /
    • 2004
  • After the author of 'Luxinjing' explained the children's characters using the concept of Pure-Yang, the term has been widely exploited in the literature of Oriental pediatrics, Its meaning could be summed up in three general categories, namely: Shengyang(盛陽), Zhiyinzhiyang(稚陰稚陽) and Shaoyang(少陽). The implications of Pure-Yang were different in each dynasties of China. By the early Qing(淸) period, it meant mostly Shengyang(盛陽), but its meaning moved in the direction of Zhiyinzhiyang(稚陰稚陽) after Wu Jutong(吳鞠通). And this movement in the interpretation of this term was largely triggered by the pharmaceutical concerns of doctors as too much medicine of cooling and gastrointestinal effect was used to 'cool off' the over-charged Yang characters(盛陽) of children, causing considerable detrimental side effects to the children's body. The concept of Zhiyinzhiyang(稚陰稚陽) which emphasizes the fragility of children's body thus came in action. The meaning of physiological terms in Oriental Medicine is essentially linked to its clinical applications as we have seen in the case of Pure Yang. In that respect, the recent interpretation of Pure-Yang as Shaoyang(少陽) among physicians in China seems lacking in its crucial counterpart, which is its clinical applications. No theory can prove fruitful in the absence of its practice.

Methylene Blue-stained Interstitial Cells are Electrically Active in the Myenteric Board Freshly Prepared from the Murine Small Intestine

  • Lee, Kyu-Pil;Jeon, Ju-Hong;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.193-198
    • /
    • 2006
  • Many gastrointestinal muscles show electrical oscillation, so-called 'slow wave', originated from interstitial cells of Cajal (ICCs). Thus, a technique to freshly isolate the cells is indispensable to explore the electrophysiological properties of the ICCs. To apply an enzyme solution on the serosal surface for cell isolation, the intestine was inverted and 0.02% trypsin solution and 0.04% collagenase solution were applied to serosal cavity. After the enzyme treatment, mucosal layer was removed and longitudinal muscle layer was gently separated from the rest of tissue. The thin layer was stretched in the recording chamber and mounted on an inverted microscope. Using ${\beta}-escine$, perforated whole cell patch clamp technique was used. Under a microscope, the tissue showed smooth muscle cells and interstitial cells around the myenteric plexus. Under voltage clamp condition, three types of membrane potential were recorded. One group of interstitial cells, which were positive to methylene blue and CD34, showed spontaneous outward current. These cells had bipolar shape and were considered as fibroblast-like cells because of their peculiar shape and arrangement. Another group, positive to c-kit and methylene blue, showed spontaneous inward current. These cells had more rounded shape and processes and were considered as ICCs. The third, positive to c-kit and had granules containing methylene blue, showed quiet membrane potentials under the voltage-clamp mode. These cells appeared to be resident macrophages. Therefore, in the freshly isolated thin tissue preparation, methylene blue could easily identify three types of cells rather than morphological properties. Using this method, we were able to study electrical properties of fibroblast and residential macrophage as well as myenteric ICCs.

Comparison of Biological Activities on Rehmanniae Radix and Fermented Rehmanniae Radix (지황(地黃)과 발효(醱酵) 지황(地黃)의 생리활성 비교 연구)

  • Kim, Eun-Hyu;Kim, Kyoung-Shin;Chae, Suhn-Kee;Kim, Byoung-Soo;Kang, Jung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.306-313
    • /
    • 2012
  • Herbal medicines are medicinal products containing a single or a mixture of two or more different herbal substances or herbal preparations as active principles. Recently, much attention has been paid to developing various kinds of fermented herbal extracts, a new type of traditional herbal medicine in the field of Korean traditional medicine. The fermentation of medicinal herbs is intended to exert a favorable influence on bioestability, bioavaliablilty and pharmacological activity of herbal extract in the gastrointestinal tract as well as intensifying the nutritional and pharmacological aspects of the medicinal herbs. The purpose of this study was to investigate biological activities of fermented Rehmanniae Radix by lactic acid bacteria at $30^{\circ}C$ for 3 days in comparison with those for Rehmanniae Radix The fermented Rehmanniae Radix exhibited different chemical profile to Rehmanniae Radix generated with HPLC, indicating production of new ingredients during fermentation. Rehmanniae Radix served as good nutritional sources for the growth of lactic acid bacteria showing increased number of bacteria during fermentation. Toxic effect of the fermented Rehmanniae Radix to cells were not seen judged by the MTT assay. The fermented Rehmanniae Radix exhibited better antioxidant effect than non-fermented Rehmanniae Radix analyzed by a SOD-likely assay. Both hypoglycemic and hypotensive effects of the fermented Rehmanniae Radix were also detected and better than those for Rehmanniae Radix in showing dose-dependent inhibitory effects on alpha-glucosidase and ACE, respectively. In conclusion, fermented Rehmanniae Radix appears to have more biological activities than non-feremented Rehmanniae Radix showing not only antioxidant effect but also cardiovascular protection.

pH-mediated Regulation of Pacemaker Activity in Cultured Interstitial Cells of Cajal

  • Kim, Byung-Joo;Lee, Jae-Hwa;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemakers in gastrointestinal tracts, regulating rhythmicity by activating nonselective cation channels (NSCCs). In the present study, we investigated the general characteristics and pH-mediated regulation of pacemaker activity in cultured interstitial cells of Cajal. Under voltage clamp mode and at the holding potential of -60 mV, the I-V relationships and difference current showed that there was no reversal potential and voltage-independent inward current. Also, when the holding potentials were changed from +20 mV to -80 mV with intervals of 20 mV, there was little difference in inward current. In pacemaker activity, the resting membrane potential (RMP) was depolarized (In pH 5.5, $23{\pm}1.5$ mV depolarized) and the amplitude was decreased by a decrease of the extracellular pH. However, in case of increase of extracellular pH, the RMP was slightly hyperpolarized and the amplitude was decreased a little. The melastatin type transient receptor potential (TRPM) channel 7 has been suggested to be required for intestinal pacemaking activity. TRPM7 produced large outward currents and small inward currents by voltage ramps, ranging from +100 to -100 mV from a holding potential of -60 mV. The inward current of TRPM7 was dramatically increased by a decrease in the extracellular pH. At pH 4.0, the average inward current amplitude measured at -100 mV was increased by about 7 fold, compared with the current amplitude at pH 7.4. Changes in the outward current (measured at +100 mV) were much smaller than those of the inward current. These results indicate that the resting membrane potential of pacemaking activity might be depolarized by external acidic pH through TRPM7 that is required for intestinal pacemaking activity.

Ginger and Its Pungent Constituents Non-Competitively Inhibit Serotonin Currents on Visceral Afferent Neurons

  • Jin, Zhenhua;Lee, Goeun;Kim, Sojin;Park, Cheung-Seog;Park, Yong Seek;Jin, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.149-153
    • /
    • 2014
  • Nausea and emesis are a major side effect and obstacle for chemotherapy in cancer patients. Employ of antiemetic drugs help to suppress chemotherapy-induced emesis in some patients but not all patients. Ginger, an herbal medicine, has been traditionally used to treat various kinds of diseases including gastrointestinal symptoms. Ginger is effective in alleviating nausea and emesis, particularly, for cytotoxic chemotherapy drug-induced emesis. Ginger-mediated antiemetic effect has been attributed to its pungent constituents-mediated inhibition of serotonin (5-HT) receptor activity but its cellular mechanism of action is still unclear. Emetogenic chemotherapy drugs increase 5-HT concentration and activate visceral vagal afferent nerve activity. Thus, 5-HT mediated vagal afferent activation is essential to provoke emesis during chemotherapy. In this experiment, water extract of ginger and its three major pungent constituent's effect on 5-HT-evoked responses were tested on acutely dispersed visceral afferent neurons with patch-clamp methods. The ginger extract has similar effects to antiemetic drug ondansetron by blocking 5-HT-evoked responses. Pungent constituents of the ginger, [6]-shogaol, [6]-gingerol, and zingerone inhibited 5-HT responses in a dose dependent manner. The order of inhibitory potency for these compounds were [6]-shogaol>[6]-gingerol>zingerone. Unlike well-known competitive 5-HT3 receptor antagonist ondansetron, all tested ginger constituents acted as non-competitive antagonist. Our results imply that ginger and its pungent constituents exert antiemetic effects by blocking 5-HT-induced emetic signal transmission in vagal afferent neurons.

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

The Effect of Exercise on the Conversion Rate of Ingested Glueose to Glycogen in the Hindlimb Skeletal Muscles in Rats (흰위에서 운동부하후 경구투여한 Glucose가 특성이 다른 골격근에서 Glycogen으로 합성되는 속도)

  • Jung, Kyung-Hwa;Kim, Jong-Yeon;Kim, Yong-Woon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.79-86
    • /
    • 1988
  • In the present study the effect of exercise on the conversion rate of ingested glucose to glycogen in the different types of hindlimb skeletal muscles in Sprague-Dawley male rats was studied. The amounts of synthetized glycogen from ingested glucose of fast-twitch white(WV), fast-twitch red(RV), mixed type of fast-twitch white and red(EDL), and slow-twitch(SOL) muscles were determined at 30 and 90 min. after ingestion of 25% glucose solution which contained $^{14}C$-glucose($2m{\ell}(1uCi)$/100gm B. W.)in control and exercise loaded rats. The result was summarized as follows : The about 55% at 30 min. and 70% at 90 min. after glucose ingestion were absorbed from gastrointestinal tract. This result shows no effects of exercise on absorption rate from gastrointestinal tract. The amount of synthetized glycogen of SOL from ingested glucose at 30 and 90 min. after glucose ingestion were highest, whether WV were lowest in hindlimb skeletal muscles in control and exercise loaded rats. In the exercise loaded rats, the amounts of synthetized glycogen of SOL, RV, and EDL at 90 min. after glucose ingestion was much higher than control rats, but not different in WV between exercise-loaded and control rats. At 30 min. after glucose ingestion, only SOL of exercise loaded rats was higher than control rats. In the control rat, the synthesis of glycogen was almost completed during initial 30 minutes. On the other hand, in the exercise loaded rat, except WV was opposite result of control rats, i. e., amounts of synthetized glycogen were major during late period. The amount of synthetized glycogen of liver at 30 and 90 min. after glucose ingestion in exercise loaded rats was higher than control rats. The rate of glycogen synthesis in control and exercise loaded rats were higher between 30-90 minute than initial 30 minute.

  • PDF