• Title/Summary/Keyword: Gastrocnemius muscles

Search Result 293, Processing Time 0.026 seconds

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.

Effect of Wearing Ankle Weights on Underwater Treadmill Walking

  • Park, Que Tae;Kim, Suk Bum;O'Sullivan, David
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Objective: The main purpose of this study was to investigate the effects of wearing an ankle weight belt while performing gait in water by focusing on the effect of using ankle weights have on the gait kinematics and the muscle activities for developing optimum training strategies. Method: A total of 10 healthy male university students were recruited for the study. Each participant was instructed to perform 3 gait conditions; normal walking over ground, walking in water chest height, and walking in water chest height while using ankle weights. All walking conditions were set at control speed of $4km/h{\pm}0.05km/h$. The depth of the swimming pool was at 1.3 m, approximately chest height. The motion capture data was recorded using 6 digital cameras and the EMG was recorded using waterproof Mini Wave. From the motion capture data, the following variables were calculated for analysis; double and single support phase (s), swing phase (s), step length (%height), step rate (m/s), ankle, knee, and hip joint angles ($^{\circ}$). From the electromyography the %RVC of the lower limb muscles medial gastrocnemius, rectus femoris, erector spinae, semitendinosus, tibialis anterior, vastus lateralis oblique was calculated. Results: The results show significant differences between the gait time, and step length between the right and left leg. Additionally, the joint angular velocities and gait velocity were significantly affected by the water resistance. As expected, the use of the ankle weights increased all of the lower leg maximum muscle activities except for the lower back muscle. Conclusion: In conclusion, the ankle weights can be shown to stimulate more muscle activity during walking in chest height water and therefore, may be useful for rehabilitation purposes.

Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice

  • Cho, Da-Eun;Choi, Gwang-Muk;Lee, Yong-Seok;Hong, Joon-Pyo;Yeom, Mijung;Lee, Bombi;Hahm, Dae-Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.657-665
    • /
    • 2022
  • Background: Sarcopenia is a new and emerging risk factor aggravating the quality of life of elderly population. Because Korean Red Ginseng (RG) is known to have a great effect on relieving fatigue and enhancing physical performance, it is invaluable to examine its potential as an anti-sarcopenic drug. Methods: Anti-sarcopenic effect of non-saponin fraction of Korean Red Ginseng (RGNS) was evaluated in C2C12 myoblasts treated with C2-ceramide to induce senescence phenotypes, and 22-month-old mice fed with chow diet containing 2% RGNS (w/w) for 4 further months. Results: The RGNS treatment significantly alleviated cellular senescence indicated by intracellular lipid accumulation, increased amount of lysosomal β-galactosidase, and reduced proliferative capacity in C2C12 myoblasts. This effect was not observed with saponin fraction. In an aged mouse, the 4-month-RGNS diet significantly improved aging-associated loss of muscle mass and strength, assessed by the weights of hindlimb skeletal muscles such as tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GN) and soleus (SOL), and the cross-sectional area (CSA) of SOL muscle, and the behaviors in grip strength and hanging wire tests, respectively. During the same period, an aging-associated shift of fast-to slow-twitch muscle in SOL muscle was also retarded by the RGNS treatment. Conclusions: These findings suggested that the long-term diet of RGNS significantly prevented aging-associated muscle atrophy and reduced physical performance, and thus RGNS has a strong potential to be developed as a drug that prevents or improves sarcopenia.

Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts in an Animal Model of Dexamethasone-Induced Muscle Loss (Dexamethasone으로 유도한 근감소 동물모델에서 상황버섯-오미자박 고상발효 열수추출물의 근감소 개선에 대한 효과)

  • Su-Jin, Hwang;Young-Suk, Kim;Tae Woo, Oh
    • Herbal Formula Science
    • /
    • v.30 no.4
    • /
    • pp.269-280
    • /
    • 2022
  • Objectives : In this study, it was investigated the effects of solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis extract (PS) and its action mechanism on dexamethasone-induced muscle atrophy in mice. Methods : In mice, muscle atrophy model was induced by dexamethasone (5 mg/kg, I.p) once daily for 2 weeks and with PS extract administration (100 and 300 mg/kg, p.o.) as treatment groups. The changes in body weights, grip strength, Treadmill test, muscle weights, and the expression of atrophy-related genes were measured in muscle atrophy mice. The histological changes of gastrocnemius tissues were also observed by H&E staining with measurement of myofiber size. Results : The administration of PS extract increased significantly body weights, grip strength, treadmill test and muscle weights in muscle atrophy mice. PS extract administration increased significantly the area of myofibers and inhibited structural damages of muscle and increased significantly the expression of myogenin and decreased significantly the expression of MuRF1, Atrogin1 and phosphorylation of AMPK and PGC1α in muscle tissues of muscle atrophy mice. Conclusions : These results indicate that PS extract has a improvement effects on muscle atrophy with stimulation of myogenic differentiation and inhibition of mRNA degradation that could be related with the activation of AMPK and PGC1α signaling pathways in muscle. This suggests that PS extract can apply to treat muscle atrophy in clinics.

The non-saponin fraction of Korean Red Ginseng ameliorates sarcopenia by regulating immune homeostasis in 22-26-month-old C57BL/6J mice

  • Oh, Hyun-Ji;Jin, Heegu;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.809-818
    • /
    • 2022
  • Background: The non-saponin fraction (NSF) of Korean Red Ginseng is a powder in which saponin is eliminated from red ginseng concentrate by fractionation. In this study, we examined the effect of NSF on age-associated sarcopenia in old mice. Methods: NSF (50 or 200 mg/kg/day) was administered orally daily to young (3-6-month-old) and old (20-24-month-old) C57BL/6 J mice for 6 weeks. Body weight and grip strength were assessed once a week during the oral administration period. The gastrocnemius and quadriceps muscle were excised, and the muscle fiber size was compared through hematoxylin and eosin staining. In addition, the effect of NSF on sarcopenia and inflammation/oxidative stress-related factors in hindlimb muscles was investigated by western blotting. Flow cytometry analysis was conducted to investigate the effect of NSF on immune homeostasis. Blood samples were collected by cardiac puncture, and the serum levels of insulin-like growth factor 1, pro-inflammatory cytokines, and glutathione were evaluated. Results: NSF significantly alleviated muscle strength, mass, and also fiber size in old mice. Age-associated impairment of immune homeostasis was recovered by NSF through retaining CD11b+F4/80+ macrophages and regulating inflammatory biomarkers. NSF also decreased the age-induced expression of oxidative stress factors. Taken together, NSF showed the effect of improving sarcopenia by inhibiting low-grade chronic inflammatory/oxidative stress factors. Conclusion: NSF exhibited anti-sarcopenia effects by regulating chronic inflammation and oxidative stress in old mice. Thus, we suggest that NSF is a promising restorative agent that can be used to improve sarcopenia in the elderly as well as maintain immune homeostasis.

Effects of Boehmeria platanifolia Extract on Muscle Amelioration in Dexamethasone-Induced Muscle Atrophy Mouse Model (개모시풀추출물의 Dexamethasone 유도 근위축 마우스 모델에서 근개선 효과 연구)

  • Misun Kim;Heung Joo Yuk;Dong-Seon Kim;Yoon-Young Sung
    • The Korea Journal of Herbology
    • /
    • v.38 no.5
    • /
    • pp.31-37
    • /
    • 2023
  • Objective : This study was conducted to investigate the muscle-improving and therapeutic effects of Boehmeria platanifolia (BP) in a mouse model of dexamethasone-induced muscle atrophy. Methods : Muscle atrophy was induced in C57BL/6 mice by intraperitoneal administration of dexamethasone for 12 days. BP extract was administered orally at doses of 100 mg/kg and 200 mg/kg for 19 days, starting 7 days before the intraperitoneal administration of dexamethasone. Mice were weighed during the experimental period, and muscle strength and muscle weight were measured at the end of the experiment. The gastrocnemius (GASTROC) muscles of mice were isolated and the cross-sectional area (CSA) of the muscle fibers was measured after H&E staining. Results : Dexamethasone-induced muscle atrophy mice had a decrease in body weight compared to normal mice, and BP-administrated mice did not show significant change in body weight compared with a control group. Muscle strength in mice with induced muscle atrophy was reduced compared to normal and significantly increased with BP administration and positive control. In addition, the weight of the quadriceps (QUAD) muscle and fiber size of the GASTROC muscle, which was reduced in sarcopenia-induced mice, was increased by BP. Conclusion : BP extract increased muscle strength, muscle weight, and muscle fiber size in dexamethasone-induced muscle atrophy mice. This suggests that the efficacy of BP extracts in improving muscle strength and preventing and treating sarcopenia may be beneficial for the development of potential therapeutic or functional products.

Effects of Fasting and High-fat Diet Feeding on Uncoupling Protein 3 mRNA Levels of Skeletal Muscle in Rats (절식과 고지방식 섭취가 골격근 UCP3 mRNA 발현에 미치는 영향)

  • Lim, Kiwon;Hwang, Hye-Jung;Suh, Heajung;Tamura, Tomohiro
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • PURPOSE. The purpose of this study was to investigate the effects of fasting and high-fat diet feeding on uncoupling protein 3 (UCP3) mRNA levels, uncoupling the respiratory chain and producing heat, of skeletal muscle in rat. METHODS. Fasting experiment: Forty Male Sprague-Dawley rats (5 wk) were divided into non-fasting groups (CON) and fasting groups (FG) for 0 day, 0.5 day (12 hr), 1 day, 2 day and 3 day. The rats of CON were sacrificed at 0 and 3 day. High-fat diet experiment: Forty Male Sprague-Dawley rats (5 wk) were divided into low-fat diet groups (LF) and high-fat diet group feeding for 0 day, 0.5 day (12 hr), 1 day, 2 day and 3 day. The rats of LF were sacrificed at 0 and 3 day. Analysis: Analysis of UCP3 mRNA expression was used by Real-time PCR. RESULTS. UCP3 mRNA levels of FG group were increased according to time course for 2 days- fasting but decreased at 3 day-fasting. UCP3 mRNA of HF were increased during HF diet feeding for 2 day, and peaked at 1 day-HF feeding, but decreased 2 day and 3 day-HF feeding CONCLUSION. Therefore, it may be rational that UCP3 is up-regulation when a large amount of fatty acids influx occurs in skeletal muscles as well as might have a role for fine adjustments of energy expenditure.

Effects of ursolic acid on muscle mass and bone microstructure in rats with casting-induced muscle atrophy

  • Kang, Yun Seok;Noh, Eun Bi;Kim, Sang Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.45-49
    • /
    • 2019
  • [Purpose] Recent studies suggest that ursolic acid (UA) is a potential candidate for a resistance exercise mimetic that can increase muscle mass and alleviate the deleterious effect of skeletal muscle atrophy on bone health. However, these studies evaluated the effects of UA on skeletal muscle and bone tissues, and they have not verified whether such effect could occur concurrently on muscle and bone, as is the case with resistance exercise. Thus, the aim of this study was to analyze the effect of UA injection on muscle mass and bone microstructure using an animal model of atrophy to demonstrate the potential of UA as a resistance exercise mimetic. [Methods] The immobilization (IM) method was used on the left hindlimb of Sprague Dawley (SD) rats for 10 days to induce muscle atrophy, whereas the right hindlimb was used as an internal control (IC). The animal models were divided into two groups, SED (sedentary, n=6) and UA (n=6) to demonstrate the effect of UA on atrophic skeletal muscles. The UA group received a daily intraperitoneal injection of UA (5 mg/kg/day) for 8 weeks. After 10 days of IM, the data collected for the IC were compared with that of IM to determine whether muscle atrophy might occur. [Results] Muscle atrophy was induced and bone mineral density (BMD) decreased significantly. The 8-week UA treatment significantly increased the gastrocnemius muscle mass compared to the SED group. In regard to the effect of UA on bones, negative results such as a decrease in BMD, trabecular bone volume fraction, and trabecular number, and an increase in trabecular separation, were observed in the SED group, but no such difference was observed in the UA group. No significant difference was observed in atrophic hindlimbs between SED and UA groups. [Conclusion] These results alone are insufficient to suggest that UA is a potential resistance exercise mimetic for atrophic skeletal muscle and weakened bone. However, this study will help determine the potential of UA as a resistance exercise mimetic.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Retrospective Approach- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -후향성 연구-)

  • Ryu, Jiseon
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.3
    • /
    • pp.345-356
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the local stability of the lower extremity joints and muscle activation patterns of the lower extremity during walking between falling and non-falling group in the elderly women. Method: Forty women, heel strikers, were recruited for this study. Twenty subjects (age:72.55±5.42yrs; height:154.40±4.26cm; mass:57.40±6.21kg; preference walking speed:0.52±0.17m/s; fall frequency=1.70±1.26 times) had a history falls(fall group) within two years and Twenty subjects (71.90±2..90yrs; height:155.28±4.73cm; mass:56.70±5.241kg; preference walking speed: 0.56±0.13m/s) had no history falls(non-fall group). While they were walking on a instrumented treadmill at their preference speed for a long while, kinematic and EMG signals were obtained using 3-D motion capture and wireless EMG electrodes, respectively. Local stability of the ankle and knee joint were calculated using Lyapunov Exponent (LyE) and muscles activation and their co-contraction index were also quantified. Hypotheses were tested using one-way ANOVA and Mann-Whitey. Spearman rank was also used to determine the correlation coefficients between variables. Level of significance was set at p<.05. Results: Local stability in the knee joint adduction-abduction was significantly greater in fall group than non-fall group(p<.05). Activation of anterior tibials that acts on the foot segment dorsal flexion was greater in non-fall group than fall group(p<.05). CI between gastrocnemius and anterior tibials was found to be significantly different between two groups(p<.05). In addition, there was significant correlation between CI of the leg and LyE of the ankle joint flexion-extention in the fall group(p<.05). Conclusion: In conclusion, muscles that act on the knee joint abduction-adduction as well as gastrocnemius and anterior tibials that act on the ankle joint flexion-extention need to be strengthened to prevent from potential fall during walking.

FES Exercise Program for Independent Paraplegic Walking (하반신 마비환자의 FES 독립보행을 위한 근육 강화 프로그램)

  • Khang, Seon-Hwa;Khang, Gon;Choi, Hyun-Joo;Kim, Jong-Moon;Chong, Soon-Yeol;Chung, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1998
  • This research was designed to investigate how the exercise program affects paraplegic standing and walking employing functional electrical stimulation(FES). Emphasis was also given to fatigue of major lower extremity muscles induced by different types of electrical stimulation. We applied continuous and intermittent rectangular pulse trains to quadriceps of 10 normal subjects and 4 complete paraplegic patients. The frequencies were 20Hz and 80Hz, and the knee angle was fixed at 90$^{\circ}$and 150$^{\circ}$to investigate how muscle fatigue is related to muscle length. The knee extensor torque was measured and monitored. We have been training quadriceps and gastrocnemius of a male paraplegic patient by means of electrical stimulation for the past two year. FES standing was initiated when the knee extensors became strong enough to support the body weight, and then the patient started FES walking utilizing parallel bars and a walker. We used an 8-channel constant-voltage stimulator and surface electrodes. The experimental results indicated that paralyzed muscles fatigued rapidly around the optimal length contrary to normal muscles and confirmed that low frequency and intermittent stimulation delayed fatigue. Our exercise program increased muscle force by approximately 10 folds and decreased the fatigue index to half of the initial value. In addition, the exercise enabled the patient to voluntarily lift each leg up to 10cm, which was of great help to the swing phase of FES walking. Both muscle force and resistance to fatigue were significantly enhanced right after the exercise was applied every day instead of 6 days a week. Up to date, the patient can walk for more than two and half minutes at 10m/min while controlling the on/off time of the stimulator by pushing the toggle switch attached to the walker handle.

  • PDF