• 제목/요약/키워드: Gasoline injector

검색결과 153건 처리시간 0.033초

PFI용 2홀 2분무 인젝터의 비정상 분무 특성 (Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine)

  • 김범준;이재호;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

직접분사식 가솔린 선회분사기 개발에 관한 연구 (Development of Gasoline Direct Swirl Injector)

  • 박용국;이충원
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.78-86
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. The GDI system includes a high injection pressure, smaller mean diameter, good spray characteristics and stability. We were interested in the development for gasoline direct swirl injector(GDSI) in which the swirler is specially designed with an incident angle. Nymerical analysis was utilized to investigate the internal flow of GDSI with a goal to determine the swirl incident angle and needle lift. Accordingly, it describes characteristics of a GDSI in which the flowrate and spray characteristics are satisfied. especially the spray tip penetration decreases, compared with other type GDI, mean diameter of droplets is from 20${\mu}{\textrm}{m}$ to 25${\mu}{\textrm}{m}$ and spray angle ranges from 64$^{\circ}$to 66$^{\circ}$.

PEI용 가솔린 인젝터의 비정상 간헐 분무 특성 (Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector)

  • 김범준;이재호;조대진;윤석주
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

분사조건에 따른 가솔린 직접분사용 다공 분사기에서의 LPG 분무특성 (LPG Spray Characteristics in a Multi-hole Injector for Gasoline Direct Injection)

  • 정진영;오희창;배충식
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Liquefied petroleum gas (LPG) is regarded as an alternative fuel for spark ignition engine due to similar or even higher octane number. In addition, LPG has better fuel characteristics including high vaporization characteristic and low carbon/hydrogen ratio leading to a reduction in carbon dioxide emission. Recently, development of LPG direct injection system started to improve performance of vehicles fuelled with LPG. However, spray characteristics of LPG were not well understood, which is should be known to develop injector for LPG direct injection engines. In this study, effects of operation condition including ambient pressure, temperature, and injection pressure on spray properties of n-butane were evaluated and compared to gasoline in a multi-hole injector. As general characteristics of both fuels, spray penetration becomes smaller with an increase of ambient pressure as well as a reduction in the injection pressure. However, it is found that evaporation of n-butane was faster compared to gasoline under all experimental condition. As a result, spray penetration of n-butane was shorter than that of gasoline. This result was due to higher vapor pressure and lower boiling point of n-butane. On the other hand, spray angle of both fuels do not vary much except under high ambient temperature conditions. Furthermore, spray shape of n-butane spray becomes completely different from that of gasoline at high ambient temperature conditions due to flash boiling of n-butane.

가솔린 직접 분사식 인젝터의 미립화 특성에 관한 연구 (A Study on the Atomization Characteristic of a Gasoline Direct Injector)

  • 김봉규;이기형;이창식;홍진성
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.65-71
    • /
    • 1999
  • Recently new engine system is being required to cope with intensive emission restriction . For this reason, GDI(Gasoline direct injection) engine system which can satisfy both as good fuel economy as diesel engine and the performance to surpass PFI gasoline engine is being development . Since fuel injection system plays a significant role in GDI engine performance, the investigation of the spray characteristics injected from GDI injector above all is indispensable for GDI system development. In this study , spray developing shape was visualized using laser sheet with Nd : YAG laser and atomization characteristics was analyzed by measuring velocities and droplet size with PDA. Utilizing these results , the basic design factor of GDI injector can be offered.

  • PDF

가솔린 자동차의 희박연소시스템 적용을 위한 연료공급 최적화에 관한 연구 (I) - 가솔린 인젝터의 연료분열특성에 관한 연구 - (A Study on the Optimization of Fuel Metering for the Lean Combustion System in a Gasoline Engine (I))

  • 윤석주;조대진;방두열
    • 한국분무공학회지
    • /
    • 제3권3호
    • /
    • pp.33-41
    • /
    • 1998
  • In recently, a study on the lean combustion is investigated intensively, because it is expected that this method may decrease the harmful exhaust gas and improve fuel economy in gasoline engine. The problems of lean combustion system in gasoline engine are ignition difficulty, misfire and instability of combustion. The investigation on the optimization of fuel metering and the control of mixing gas flow may be critical to improve the performance of lean combustion. In the fuel injection gasoline engine, the formation of mixture influences strongly on the engine performance such that the importance of fuel metering system becomes apparent. First of all, a study on the fuel breakup characteristics of gasoline fuel injector was carried out in this paper. Fuel injectors are pintle and 4hole-2spray type. The purpose of this study is to clarify the atomization mechanism of spray injected into atomosphere field through electronic controlled-fuel injectors, and to analyze spray characteristics such as drop size distribution and mean drop diameter produced at fuel injector. In this paper, the spray development is observed by taking photograps using 80mm still-camera system, and drop sizes are measured by PMAS. From these experiment, spray pattern injected from gasoline fuel injectors was investigated clearly. Also, it was found that SMD and drop size distribution of injected fuel spray from gasoline fuel injectors.

  • PDF

위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구 (A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA))

  • 김효진;조현;삭다 통차이;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

2중 분류 가솔린 연료분사기들의 분무거동 및 미립화 특성 (Spray Behavior and Atomization Characteristics of Dual Stream Gasoline Injectors)

  • 송범근;김원태;강신재
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.112-120
    • /
    • 2005
  • The injector, which is used in a 4-valve gasoline engine, is required to be maintained the dual stream because of the design of dual intake port. In addition, the spray characteristics of fuel injector have strong influence on engine performance, exhaust emission, fuel consumption, and especially the cold start condition for the port injection. So, commercial gasoline injectors off different type were inspected. Those are 2 hole,4 hole, air shroud 4 hole, and air shroud 4 hole injector with separator. The spray behavior of dual stream was researched by the visualization system and PDPA system was employed to measure the droplet size. Atomization is one of the most important characteristic, so droplet size distributions and SMD are investigated. And the spray characteristics of each injector are also analyzed such as the spray tip penetration, spray angle, and separation angle.

노외용 소형엔진 인젝터의 분무특성에 대한 실험적 연구 (Experimental Study on the Spray Characteristics of a Fuel Injector for a Non-Road Small Engine)

  • 염경민;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2005-2010
    • /
    • 2011
  • 최근 배기 규제가 자동차 엔진에 국한되지 않고 노외용 소형엔진 부분에서도 세계적으로 강화됨에 따라, 배기규제에 대응하기 위하여 기존 노외용 소형엔진의 기화기 방식에서 벗어나 전자연료 분무방식으로의 전환이 필요하게 되었다. 본 연구에서는 400cc 가솔린 엔진용 인젝터의 연료공급 특성을 실험적으로 분석하였으며, 이를 토대로 소형엔진에 적합한 인젝터를 선정하였다. 분무질량분포 측정장치를 통하여 3홀 및 6홀인젝터의 분무질량분포 특성을 분석하였다. 가시화 실험 장치를 통하여 각 인젝터의 분무각, 분무도달거리 및 분무폭을 분석하였다. 분무질량분포 실험 및 분무 가시화 실험을 통하여 분무특성이 우수하고 안정적인 분무를 형성하는 6홀 인젝터를 소형엔진용으로 선정하였다.

가솔린엔진 인젝터의 벽류 및 분무특성에 관한 실험적 연구 (Experimental Study on the Wall-Wetting Formation and Spray Characteristics of Gasoline Engine Injector)

  • 이성원;이상인;박성영
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.815-820
    • /
    • 2010
  • 본 연구에서는 자동차용 가솔린엔진에 장착되는 인젝터의 연료공급 특성을 실험적으로 분석하였다. 4홀과 12홀 인젝터의 장착각 변화와 포트 마스킹의 형상변화에 따른 벽유량을 측정하고 분석하였다. 분무가시화 실험을 통하여 분무성장과정과 분사각, 연료미립화 및 분무도달거리를 분석하였다. 벽류측정 실험 결과, 벽유량은 흡기유동과 인젝터 장착각에 큰 영향을 받으며, 인젝터 장착각이 감소할수록 벽유량은 감소하였다. 마스킹의 경우 유동 면적이 감소하여 국소 유속이 증가할때 벽유량 감소에 효과를 보였다. 분무 가시화를 통하여 12홀 인젝터가 압력 변화에 대한 미립화의 강건성 측면에서 우수한 분무특성을 보였다.