• Title/Summary/Keyword: Gasoline engine

Search Result 752, Processing Time 0.029 seconds

Development of educational contents for the real time monitoring by changing of hybrid vehicle driving mode (하이브리드 자동차의 주행 모드 변환에 따른 실시간 모니터링 교육용 콘텐츠 개발)

  • Lee, Joong-Soon;Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1575-1580
    • /
    • 2011
  • A key factor in the study of hybrid vehicle is to enhance the usability of energy. The paper introduces the monitor and controlling technology of hybrid vehicle that can process the relevant information considering the structure of power system and driving strategies simultaneously, and can monitor its results. This technology, so called HEV algorithm analysis, has been applied to PRIUS THS made by Toyota Co. LTD. This model is adapted to parallel hybrid type. It has a somewhat comlex structure, but has several merits. It's energy loss is lower when conversing. and also it is easily applied to the conventional vehicle having a gasoline engine without any overall changing of its structure, and so on. This monitor and controlling technology is very useful to study on the various driving strategies of hybrid vehicle for maximizing the usability between engine and electric motor.

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

Study of Failure Examples for Emission Gas Control System in Gasoline Engine (가솔린 엔진 배출가스 제어장치에 대한 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Lee, Young Suk;Youm, Kwang Wook;han, Jae Oh;Lim, Ha young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The purpose of this paper is to study for the emission gas control of passenger car. The first example, the PCSV never open when operating condition, but it opened by causing malfunction because of trouble. As a result, the purge gas entered into surge tank, a mount of fuel was displayed with excessive supply on tester. Therefore, it certified the bad-condition of the engine when idling by decreasing of fuel injection quantity from engine ECU. The second example, the hose activating a EGR valve didn't supply the vacuum pressure because of assembling the other part. Thus, it knew the bad-condition of engine that the EGR valve would not work normally by leaking with the other port. The third example, as the rear oxygen sensor of two sensor were fault-installing by changing the sensor of other a car it could not detect of oxygen quantity. Finally, it found the phenomenon of abruptly decreasing vehicle speed when braking a car. Therefore, the system including with emission control has to drastically manage by maximizing condition to role decreasing the emission gas.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

Emission Characteristics for the MTBE Gasoline Engine (MTBE 가솔린기관의 배기가스 특성에 관한 연구)

  • 노병준;이삼구;김규철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.32-37
    • /
    • 2001
  • This article is to provide reasonably accurate vehicle emission estimates for the four sampled fuels which are commercially available across the nation. Emission quantities are obtained by testing a vehicle on a chassis dynamometer and capturing a sample of the emissions from the tailpipe in vehicle. The vehicle is driven following a particular pattern of idle, acceleration, cruise, and deceleration. Shown here is the trace of the test cycle known as the CVS-75 Mode which is used to certify the emission performance standards. The mode of CVS-75 consists of a cold start cycle, a hot stabilized cycle, and a hot start cycle. Emissions for the pollutants are measured in vehicle testing. These are carbon monoxide (CO), oxides of nitrogen (NOx), and total hydrocarbon (THC). The test results summarized in this report indicate that the differences for the amount of emission are quantitatively minimal.

  • PDF

Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car (승용차용 세라믹 촉매 담체의 열적 내구성의 실험적 평가)

  • Baek, Seok-Heum;Kim, Sung-Yong;Seung, Sam-Sun;Yang, Hyup;Joo, Won-Sik;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1157-1164
    • /
    • 2007
  • Ceramic honeycomb structures have performed successfully as catalyst supports for meeting hydrocarbon, carbon monoxide and nitrous emissions standards for gasoline-powered vehicles. Three-way catalyst converter has to withstand high temperature and thermal stress due to pressure fluctuations and vibrations. Thermal stress constitutes a major portion of the total stress which the ceramic catalyst support experiences in service. In this study, temperature distribution was measured at ceramic catalyst supports. Thermal durability was evaluated by power series dynamic fatigue damage model. Radial temperature gradient was higher than axial temperature gradient. Thermal stresses depended on direction of elastic modulus. Axial stresses are higher than tangential stresses. Tangential and axial stresses remained below thermal fatigue threshold in all engine operation ranges.

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

A Study on the Fuel Behavior and Mixture Formation in the Early Injection Timing of GDI Injector (직분식 가솔린 인젝터의 흡입 행정 분사시의 연료 거동 및 혼합기 분포 특성에 관한 연구)

  • Lee, Chang-Hui;Lee, Gi-Hyeong;Bae, Jae-Il;Baek, Seung-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1138-1144
    • /
    • 2002
  • Recently GDI(Gasoline Direct Injection) engine is spot-lighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. Spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is varied with crank angle. In this experimental study, two types of visualization system such as laser scattering method and schlieren method were developed to clarity the spray behavior during on intake stroke. As the ambient pressure increases, thepenetration length and spray angle show a tendancy to decrease due to rising resistance caused by the drag force of the ambient air. Distribution of injected fuel on intake stroke has a significant effect on homogeneous mixture in the cylinder. These results provide the information on macroscopic wall-wet growth in the cylinder and design factors for developing GDI injector.

A study on the noise improvement of the European vehicles, with using NVH material (유럽 수입 차량의 소음개선을 위한 NVH소재 적용연구)

  • Kwon, Joseph;Kim, Chan-Mook;Sa, Jong-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.680-685
    • /
    • 2006
  • The latest trend in the automotive industry demands the development of high stiffness car bodies and the securement of inter-system performance for low vibration and noise vehicles. This demand, however, conflicts with need for light weight design and greater fuel efficiency, thus raising the importance of optimization design to satisfy both developmental goals. We chose two European medium sedans, which has gasoline engine and diesel one, to elucidate the noise characteristics of diesel passenger cars, whose sales have been increasing in both Korea and Europe. In the present study a systematic experiment was conducted to analyze the noise characteristics in diesel cars. we made it possible for differentiating car management according to customer demand while allowing for improved commercial feasibility. it was possible to improve interior noise by 2 dB(A) on average sound pressure level. As a result, by 4% higher on articulation index(AI).

  • PDF

Characteristics of the Gasoline Spray near Impinging Wall in Suction Flow (흡입유동 중 충돌벽면 근처에서 가솔린 분무특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1285-1293
    • /
    • 2000
  • In port fuel injection system of SI engines, injected fuel is impinged onto the surface of intake valves and port-wall, and then formed the wall flow under the cold start operation. Wall flows entrained into the cylinder result in the unsteady and nonuniform mixture formation. Therefore, the spray impingement to the wall is considered as having negative influences such as lowering combustion efficiency and causing unburned hydrocarbon emissions. This study investigates the spray characteristics of the wall impinging air-assist spray in suction air flow. A PDPA was used to analyze the flow characteristics under the different conditions such as impingement angle and supplied air. Experimental data concerning the impinging sprays has been obtained in the vicinity of the wall. Measured droplets divided into the pre-impinging droplets which denote as the positive normal velocities and post-impinging droplets that describe as the negative normal velocities for the suction flow. Their velocities, size distributions and SMD are comparatively analyzed before and after the impingement.