• Title/Summary/Keyword: Gasoline direct injection compression ignition

Search Result 26, Processing Time 0.028 seconds

The Effect of Compression Ratio on Combustion and Performance Characteristics of Direct Injection Spark Ignition Hydrogen Fueled Engine. (직접분사식 스파크점화 수소기관의 연소 및 성능특성에 미치는 압축비의 영향)

  • 권병준;이종윤;이종태;이성열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1993
  • As fundamental step to find the suitable compression ratio of hydrogen fueled engine, performance and combustion characteristics of that engine were analyzed. Qualitative characteristics of the hydrogen fueled engine were similar to that of the gasoline engine, and it was also found that knock limit compression ratio of the hydrogen fueled engine was higher than that of the gasoline engine.

  • PDF

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

An Experimental Study on the Stratified Combustion Characteristics in a Direction Injection Gasoline Engine (직접 분사식 가솔린 엔진을 이용한 성층 연소 특성에 관한 실험적 연구)

  • Lee, Chang-Hee;Lee, Ki-Hyung;Lim, Kyoung-Bin;Kim, Bong-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.121-126
    • /
    • 2006
  • A gasoline-fueled stratified charge compression ignition (SCCI) engine with both direct fuel injection and intake temperature and compression ratio was examined. The fuel was injected directly by using the high temperature resulting from heating intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The effect of mixture stratification and the effect of fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.

An Experimental Study on the Combustion and Emission Characteristics of the Early Injection in a Gasoline Direct Injection Engine Using Controlled Auto Ignition Combustion Method (CAI 연소 방법을 이용한 직분식 가솔린 엔진내의 조기 분사시 연소 및 배기 특성에 관한 실험적 연구)

  • Choi Young-Jong;Lee Ki-Hyung;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.457-464
    • /
    • 2006
  • Controlled auto ignition (CAI) combustion, also known as HCCI (homogeneous charge compression ignition), offers the potential to simultaneously improve fuel economy and reduce emission. CAI-combustion was achieved in a single cylinder gasoline DI engine, with a cylinder running in a CAI mode. Standard components were used the camshafts which had been modified in order to restrict the gas exchange process. The effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region were investigated. The effect that injection timings on factor such as start of combustion, combustion duration and heat release rate was also investigated. From results early injection caused the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gave rise to good mixing of the fuel-air.

Engine Operation Characteristics of a Gasoline Direct Injection Engine (가솔린 직접 분사식 엔진의 운전특성에 관한 연구)

  • 조한승;박태용;박성진;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.54-66
    • /
    • 2000
  • A gasoline direct injection single cylinder engine has been developed to study operational characteristics for highly stratified conditions. Parameters related to design and experiment were also studied to understand the characteristics of combustion and emissions at some part load conditions. It was found that optimal timings between the end of fuel injection and spark ignition were existed for stable combustion under the stratified modes, In a low engine speed, fuel spray behavior around piston bowl was important for stable combustion. The in-cylinder air motion affecting fuel spray behavior was found to be a dominant factor at higher engine speed as fuel injection timing had to be advanced to secure enough time for fuel evaporation and mixing with surrounding air. As swirl ratio increased, spark timing could be advanced for stable combustion and a higher compression ratio could be used for improved fuel consumption and stable combustion at the stratified mode. It was also observed that electrode geometry and piston bowl shape played an important role for combustion and emission characteristics and some results were shown for comparison.

  • PDF

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

Schlieren, Shadowgraph, Mie-scattering Visualization of Diesel and Gasoline Sprays under GDCI Engine Low Load Condition (가솔린 직분식 압축착화 엔진 저부하 영역 디젤/가솔린 분무의 쉴리렌, 쉐도우그래프, 미산란법적 가시화)

  • Park, Stephen Sungsan;Kim, Donghoon;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • In this study, three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures. Fuels were injected into a high pressure/high temperature constant volume chamber under the same ambient pressure and temperature condition of low load in gasoline direct injection compression ignition (GDCI) engine. Two injection pressures (40 and 80 MPa), two ambient pressures (4.2 and 1.7 MPa), and two ambient temperatures (908 and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. It was found that the gasoline fuel is more appropriate to form a lean mixture.

Homogeneous Charge Compression Ignition Combustion and Exhaust Characteristics of a Common-rail Diesel Engine (커먼레일 디젤 엔진의 균일 예혼합 연소 및 배기특성)

  • Yoon, Seung-Hyun;Lee, Doo-Jin;Kim, Myung-Yoon;Lee, Je-Hung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.75-81
    • /
    • 2005
  • An experimental study on homogeneous charge compression ignition combustion with direct fuel injection was conducted using a single cylinder common-rail diesel engine. To improve the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber and the diesel fuel was injected into the combustion chamber as an ignition source for the gasoline premixture. The experimental results show that soot emissions were dramatically reduced with the increase of fuel premixing ratio, however incomplete products such as HC and CO increased with the increase of the premixed ratio. Earlier injection of Dl diesel fuel increased the IMEP with the decrease of HC and CO concentrations.

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.