• 제목/요약/키워드: Gasoline Vehicle

검색결과 254건 처리시간 0.02초

모사 합성 가솔린 제조 및 분무 특성 분석 연구 (Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics)

  • 박정현;최나은;박수한
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구 (A Study on Distillation Property of Automotive Gasoline and Diesel Fuel)

  • 염광욱;김상진
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.

고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션 (Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV)

  • 강승우;배충식;임병준
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.101-107
    • /
    • 2019
  • 고고도 장기체공 무인기의 추진 시스템에 다단 터보차저 가솔린 왕복기관 시스템의 적합성을 평가하기 위하여 성능 시뮬레이션을 진행하였다. Ricardo사의 1-D 엔진 시뮬레이션 WAVE를 사용하여 다단 터보차저를 포함한 엔진 시스템을 모델링하였다. 엔진 모델은 양산 2.4L 가솔린 4기통 엔진의 제원을 반영하였다. 터보차저 모델에는 상용 터보차저의 성능 맵을 적용하였다. 고도 60,000ft에서 엔진의 적정 흡기 압력을 확보하기 위해 3단 터보차저 및 인터쿨러를 구성하였다. 웨이스트 게이트는 하나로 구성하였다. 이를 통해 지상부터 고고도까지의 엔진 시스템 정상 상태 운전성을 평가하였다.

UTV용 SI엔진에서 가솔린과 LPG 사용에 따른 배출가스 특성 연구 (A Study on the Characteristics of Exhaust Gas According to the Use of Gasoline and LPG in SI Engine for UTV)

  • 장진영;우영민;신영진;고아현;정용진;조종표;김강출;표영덕;한명훈
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.94-100
    • /
    • 2022
  • Even in non-road UTV (Utility Terrain Vehicle), spark ignition engines are often used to reduce emissions. In this study, gasoline and LPG (Liquified Petroleum Gas) fuels were applied to UTV engines, and the exhaust gas and combustion stability were compared through engine tests. A 0.8-liter two-cylinder SI engine was used in the experiment. Experiments were conducted while changing the IVO (Intake Valve Open) and EVC (Exhaust Valve Close) at 1500 rpm 14 N·m, 40 N·m, and 3000 rpm 17 N·m, 44 N·m conditions. As a result of the experiment, when the valve overlap increased according to the change of IVO and EVC, combustion stability decreased and THC emission increased, but NOx decreased. Comparing the LPG engine with the gasoline engine, the amount of CO2 and PN (Particulate Number) generation decreased in the LPG engine, and the combustion stability was good.

WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석 (Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode)

  • 정준우;우승철;권석주;오세두;서영호;이기형
    • 한국분무공학회지
    • /
    • 제27권4호
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.

자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과 (A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement)

  • 임철수;홍지형;김정수;이종태;임윤성;김상규;전상진
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

A COMPARATIVE STUDY OF GASOLINE AND CNG, AS A POTENTIAL FUEL IN KOREA

  • Chauhan, Bhupendra Singh;Cho, Haeng-Muk
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2126-2130
    • /
    • 2008
  • Gasoline engine have proved its utility in light, medium and heavy duty vehicle in every sector of the world community. The concern about long term availability of petroleum and the increasing threat for the environment by the increasing load of vehicular emission, compel the technology to upgrade itself for meeting the challenges. CNG is environmentally clean alternative to the existing SI Engines with out much change in the hardware. Many researchers have found this as a potential substitute to meet the energy requirement. Higher octane number and higher self ignition temperature make it a good gaseous fuel. Although power output is slightly lesser than the gasoline it's thermal efficiency is better than the gasoline for the same SI Engine. Results showed that reduced CO, hydrocarbon emissions is a favorable outcome, with slight increase in $NO_x$ emission when compared with gasoline fuel to dual fuel mode in the existing SI Engines.

  • PDF

EFFECTS OF GAS EXHAUSTED FROM GASOLINE ENGINE ON PLANTS GROWN IN THE GREENHOUSE

  • Sugimoto, H.;Yamashita, J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.487-494
    • /
    • 1993
  • In order to establish a fully automatized pest control in the a greenhouse , the authors developed a prototype of microcomputer installed spraying vehicle which traveled along the furrows. Since a power sprayer mounted on the vehicle was driven by gasoline engine, plants grown in the greenhouse might be injured by the gas exhausted from the engine. Thus , effects of exhausted gas on photosynthetic rate and the shedding of flowers and buds of plants were examined. At first, effects of exhausted gas on photosynthetic rate of potted sweet pepper (Capsicum annuum L.) and eggplant(Solanum melongena L.) plants were examined. In a closed vinyl house the engine was operated for 5 minutes and plants were exposed to the gas for 2hours in the daytime on a fine day. Photosynthetic rate did not significantly decreased by the treatment in both species. Secondly, effects of ehtylene on the shedding of flowers and buds of sesame (Sesamum indicum L. ) were examined. In the closed and partiall opened vinyl house, the engine was operated for 5 minutes and potted sesame plants were exposed to the gas for 12 hours in the night. In partially opened vinyl house, ethylene concentration decreased to 0 ppm 3 hours after the engine was stopped and flower and bud did not shed. In contrast, when vinyl house was closed ethylene concentration was 0.75 pm even 12 hours after the engine was stopped and flowers and buds shed markedly and epinasty was observed in upper young leaves. As mentioned above , it was revealed that injury of plants in the greenhouse caused by the gas exhausted from a gasoline engine could be prevented by providing suitable ventilation.

  • PDF

차량 누적거리에 의한 연비 특성 연구 (Study on Fuel Economy Characteristics by Cumulative Distance of Vehicle)

  • 임재혁;김기호;이민호
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.57-61
    • /
    • 2017
  • The vehicle label fuel economy is used as an energy management indicator nationwide. It induces technology development of automobile manufacturers and plays a role of providing information when purchasing a consumer vehicle. However, consumers who purchase a new vehicle continued to complain that the label fuel economy is different from the mandatory fuel economy rate. The domestic fuel economy measurement method is the same as the North American measurement method. The results of the two test modes (urban (FTP-75 mode), highway (HWFET mode)) are calculated in five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used which is equivalent to the fuel efficiency value. In this study, to solve the consumers' curiosity about the fuel economy of new vehicle, we use domestic fuel economy measurement method to measure the new car condition within 150 km of driving distance and the cumulative driving distance condition of domestic label fuel economy test vehicle. A comparative evaluation of fuel economy was carried out for a durability vehicle of $6,500{\pm}1,000km$. A result, mean value of the fuel economy of the four gasoline vehicles increased by 2.7 % in the city center mode and by 2.5 % in the highway mode in the durable vehicle compared new vehicle. And in the case of the diesel vehicle it increased by 2.5 % and 3.9 % respectively. The harmful exhaust gas emitted from the vehicle also resulted in more emissions of both gasoline and diesel vehicles in new vehicles. It is considered that the increase of the frictional force of the vehicle driving system and the lubricating oil system would have an effect on the reduction of the fuel economy of the new vehicle, and it was found that the fuel economy and the exhaust gas were improved by proper cumulative distance (domesticate) to the new vehicle.

휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성 (Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle)

  • 박경균;권상일;이우석;홍지형
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF