• Title/Summary/Keyword: Gasket pressure distribution

Search Result 12, Processing Time 0.02 seconds

The Stress Distribution Analysis of PEMFC GDL using FEM (유한요소법을 이용한 고분자전해질연료전지 기체확산층의 응력분포 연구)

  • Kim, Chulhyun;Sohn, Youngjun;Park, Gugon;Kim, Minjin;Lee, Jonguk;Kim, Changsoo;Choi, Yusong;Cho, Sungbaek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.468-475
    • /
    • 2012
  • A proper stacking force and assembly are important to the performance of fuel cell. Improper assembly pressure may lead to leakage of fuels and high interfacial contact resistance, excessive assembly pressure may result in damage to the gas diffusion layer and other components. The pressure distribution of gas diffusion layer is important to make interfacial contact resistance less for stack performance. To analyze the influence of design parameter factors for pressure distribution, and to optimize stack design, DOE (Design of Experiment) was used for polymer electrolyte membrane fuel cell stack pressure test. As commonly known, the higher clamping force improves the fuel cell stack performance. However, non-uniformity of stress distribution is also increased. It shows that optimization between clamping force and stress distribution is needed for well designed structure of fuel cell stack. In this study, stack design optimization method is suggested by using FEM (Finite Element Methode) and DOE for light-weighted fuel cell stack.

Structure analysis of metal gaskets in tightened flanges (플랜지 체결 시 금속 개스킷의 구조해석)

  • IN, S.R.;Yoon, B.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.475-484
    • /
    • 2006
  • The deformation, the stress distribution, and the contact pressure of gaskets used in sealing flanges of CF (Con-Flat) or IPD (Improved) type were calculated to investigate the possibility of analyzing and estimatimg the sealing performance under a given tightening condition for a specific flange system.