• 제목/요약/키워드: Gas-solid reaction

검색결과 270건 처리시간 0.025초

Impact of High Temperature on the Maillard Reaction between Ribose and Cysteine in Supercritical Carbon Dioxide

  • Xu, Honggao;He, Wenhao;Liu, Xuan;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2009
  • An aqueous ribose-cysteine model system (initial pH 5.6) was conventionally heated to the same browning at varying temperatures ($120-180^{\circ}C$), supercritical carbon dioxide (SC-$CO_2$, 20 MPa) was also applied on the same matrices for same periods at each temperature and about 20% reduction of the absorbance at 420 nm was observed as compared with sole thermal treatment. The headspace volatiles from Maillard reaction mixtures were analyzed by solid-phase microextraction (SPME) in combination with gas chromatography and mass spectrometry (GC-MS), and predominated with sulfur containing compounds, such as thienothiophenes, polysulfur alicyclics, thiols, and disulfides. Reaction temperature exhibited complex effects on volatiles formation and those effects became further complicated by the SC-$CO_2$ treatment. The formation of noncarbonyl polysulfur heterocyclic compounds and thienothiophenes was generally favored at high temperatures. Most volatiles were inhibited in SC-$CO_2$ as compared with thermal treatment alone, however, the well-known meaty aromatic compounds, such as thiols and disulfides, were obviously enhanced.

Multiphase-Particle in Cell 해석 기법을 이용한 원뿔형 분사층 반응기 내 바이오매스의 급속열분해 반응 전산해석 (CPFD Simulation for Fast Pyrolysis Reaction of Biomass in a Conical Spouted Bed Reactor using Multiphase-particle in Cell Approach)

  • 박훈채;최항석
    • 한국폐기물자원순환학회지
    • /
    • 제34권7호
    • /
    • pp.685-696
    • /
    • 2017
  • This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model's accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.

플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조 (Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes.)

  • 주원태;홍상희
    • 한국표면공학회지
    • /
    • 제30권5호
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF

ALD를 이용한 극박막 $HfO_2 /SiON$ stack structure의 특성 평가 (Characterization of $HfO_2 /SiON$ stack structure for gate dielectrics)

  • Kim, Youngsoon;Lee, Taeho;Jaemin Oh;Jinho Ahn;Jaehak Jung
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.115-121
    • /
    • 2002
  • In this research we have investigated the characteristics of ultra thin $HfO_2 /SiON$stack structure films using several analytical techniques. SiON layer was thermally grown on standard SCI cleaned silicon wafer at $825^{\circ}C$ for 12sec under $N_2$O ambient. $HfO_2 /SiON$$_4$/$H_2O$ as precursors and $N_2$as a carrier/purge gas. Solid HfCl$_4$was volatilized in a canister kept at $200^{\circ}C$ and carried into the reaction chamber with pure $N_2$carrier gas. $H_2O$ canister was kept at $12^{\circ}C$ and carrier gas was not used. The films were grown on 8-inch (100) p-type Silicon wafer at the $300^{\circ}C$ temperature after standard SCI cleaning, Spectroscopic ellipsometer and TEM were used to investigate the initial growth mechanism, microstructure and thickness. The electrical properties of the film were measured and compared with the physical/chemical properties. The effects of heat treatment was discussed.

  • PDF

연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델 (A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas)

  • 최정후;윤필상;김기찬;이창근;조성호;류호정;박영철
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.516-521
    • /
    • 2012
  • 본 연구는 연소기체로부터 $CO_2$ 기체를 포집하는 기포 유동층 흡착 및 재생 반응기 공정의 주요 운전변수의 영향을 조사하기 위해서 단순화된 공정모델을 개발하였다. 반응속도와 반응기에서 고체입자의 평균체류시간을 이용하여 흡착탑과 재생탑에서 각 반응 전환율을 계산하였다. 실험실 규모 기포 유동층 공정에 적용하여 $CO_2$ 포집효율에 대한 온도, 기체유속, 고체순환속도, 연소기체 중 수분농도의 영향을 조사하였다. $CO_2$ 포집효율은 흡착탑의 온도 혹은 유속이 증가함에 따라서 감소하였다. 그러나 연소기체의 수분농도 혹은 재생탑의 온도가 증가함에 따라서 증가하였다. 계산된 $CO_2$ 포집효율은 측정값과 잘 일치하였다. 그러나 본 모델은 $CO_2$ 포집효율에 대한 고체순환속도의 영향과 잘 일치하지 않았다. 이의 해석을 위해서는 기체-고체 접촉효율에 대한 이해가 더 필요하였다.

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon;Lee, Soyoung;Bae, Sunyoung
    • 분석과학
    • /
    • 제30권4호
    • /
    • pp.174-181
    • /
    • 2017
  • Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성 (Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP))

  • 이은정;황해진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

화학축냉용 무기염들의 수화반응 및 열 및 물질전달 향상방안 (Study of Hydration Reaction Characteristics of Inorganic Salts for Chemical Cold Storage and Method of Enhancement of Heat and Mass Transfer)

  • 김상욱;한종훈;황용준;이건홍
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.185-191
    • /
    • 1999
  • An air-conditioning system based on the chemical heat storage principle was considered. $H_2O$ was chosen as the reaction gas and the working fluid as well. Na$_2$S, CaCl$_2$, MnCl$_2$, BaCl$_2$, MgCl$_2$, Fe$_2$(SO$_4$)$_3$ and MnSO$_4$ were tested as the solid reactants by using Cahn pressure balance. Na$_2$S was superior to other salts in respect of high capability of absorption of water gas, 5 moles of $H_2O$ per unit mole of Na$_2$S, and adequate temperature of adsorption, $65^{\circ}C$ at 7torr, and of desorption, 13$0^{\circ}C$ at 76torr. Clausius-Clapeyron diagram of Na$_2$S was obtained via adsorption experiments at several vapor pressures of water gas. To enhance heat and mass transfer characteristics, usually below 1W/m K, of the reactor bed of general adsorption systems, expanded graphite block was adapted as the support of Na$_2$S salt. Expanded graphite blocks had thermal conductivity values of 20~80W/mK with respect to 100~400kg/㎥ of block bulk density. Permeability values of expanded graphite blocks were 10$^{-13}$ ~ 10$^{-14}$ $m^2$ with respect to 100~300kg/㎥ of block bulk density showing highly decreasing values of permeability, below 10$^{-l4}$$m^2$, in the range of above 150kg/㎥ of block bulk density.y.

  • PDF

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용 (Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge)

  • 최유리;김동주;김교선
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF