• 제목/요약/키워드: Gas-phase Combustion

검색결과 232건 처리시간 0.022초

청주지역 대기 중 PCDD/Fs 오염특성 및 거동 (Characteristics of Contamination and Fate for PCDD/Fs in Ambient Air, Cheongju)

  • 김경수
    • 대한환경공학회지
    • /
    • 제31권4호
    • /
    • pp.294-299
    • /
    • 2009
  • 다이옥신의 대기 중 오염수준 및 거동을 조사하기 위해 청주시를 대상으로 3지점(공단, 주거/상업 및 농촌지역)에서 2008년 겨울철, 봄철, 및 여름철에 가스상과 입자상으로 나누어 시료를 채취하였다. 채취된 9개 시료의 대기 중 17개 다이옥신 이성질체의 농도범위는 0.73~2.48(평균 1.41) pg/$m^3$으로 검출되었으며, WHO 2005 TEQ 농도범위는 0.007~0.122(평균 0.051) pg TEQ/$m^3$으로 조사되었다. 이들 농도는 우리나라 다른 도시대기의 농도(불검출~2.149 pg TEQ/m3 )와 유사하거나 낮은 수준을 나타내었다. 대기 중 다이옥신은 대부분이 입자상태로 존재하고 있었으며(총 농도의 54~98%), 시료채취 시기나 지점에 관계없이 유사한 이 성질체 패턴을 나타내었다. 이성질체 분포 비교 및 통계적 해석결과, 청주시 대기 중 다이옥신은 특정한 오염원에 의한 영향은 미비하며 일반적인 연소공정에 의한 영향을 받고 있는 것으로 판단된다.

전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰 (A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola)

  • 최철영;최웅철
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

부탄올의 분사 및 분무특성에 관한 실험적 연구 (An experimental study on the injection and spray characteristics of butanol)

  • 정탁수;왕우경;김상암
    • 수산해양기술연구
    • /
    • 제53권1호
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

LPG엔진에서 이온프로브를 이용한 노킹 발생 위치 추정에 관한 연구 (Study on the Estimation of Knock Position in a LPG Engine with Ion-probe Head Gasket)

  • 이정원;최회명;조훈;황승환;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.42-48
    • /
    • 2003
  • LPG has been a broad concern of pro-environmental alternative fuel for vehicles. Recently, the new Liquid Phase LPG Injection(LPLI) system extends the limit of power of LPG engine and gives a chance to substitute LPG engine for diesel engine of heavy duty vehicles that are the main resources of air pollution in urban area. Large bore size of heavy duty LPG engine derives a serious knock problem. To find an optimal MBT conditions, it is necessary to know how the flame develops in the combustion chamber and find where the knock positions are. In this study. the ion-probe head gasket was used to estimate the knock position. Inverse operation of the ion-probe signal provides the flame developing characteristics. The further the position is from the spark plug, the later the flame arrives and the more times knock occurs. The main factor that effects knock position is inferred a flor situation of mixed gas in the combustion chamber.

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • 제11권4호
    • /
    • pp.217-231
    • /
    • 2006
  • The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

환형연소기에서 불안정성에 따른 유동적인 대칭성파괴 효과 Part I : 노즐 배치의 특성 (Flow Symmetry Breaking Effect According to Instability in Annular Combustor Part.I : Characteristics of Nozzle Arrangement)

  • 이희도;이기만
    • 한국추진공학회지
    • /
    • 제26권6호
    • /
    • pp.62-73
    • /
    • 2022
  • 본 연구에서는 환형연소기 형태를 가지는 가스터빈 연소기에서 연소불안정성을 제어하는 방법을 제시하고자 하였으며, 노즐 배치와 이에 따른 당량비 변화를 통한 유동적인 대칭성파괴(Flow symmetry breaking) 효과를 비교하였다. 이를 위하여 FFT, Time signal 및 위상궤적의 모드 분석을 통하여 대칭성파괴 효과를 확인하였다. 또한, 모드분석으로 불안정한 영역과 안정된 영역을 확인하였고 이를 등고선 지도에 나타내었다. 본 연구를 통해 노즐의 당량비와 배치가 대칭이거나 노즐이 연속적으로 배치되면 불안정성이 발생하였으나, 노즐의 배치 및 당량비가 대칭성을 가지질 않는다면 당량비의 차이가 작더라도 연소불안정성이 극적으로 감소하는 것을 확인할 수 있었다.

산소부화된 $H_{2}/O_{2}/N_{2}$ 예혼합 화염에서 첨가제가 NOx 생성에 미치는 영향 연구 (The Study of Effects of Additives on the NOx Formation in $H_{2}/O_{2}/N_{2}$ Premixed Flames with Oxygen Enrichments)

  • 이기용;권영석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.241-246
    • /
    • 2003
  • Numerical simulations are performed at atmospheric pressure in order to understand the effect of additives on flame speed and the NOx formation in freely propagating $H_{2}/O_{2}/N_{2}$ flames with oxygen enrichments. A chemical kinetic mechanism is developed, which involves 26 gas-phase species and 99 reactions. Under several equivalence ratios and oxygen enrichments, flame speeds are calculated and compared with those obtained from the experiments, the results of which is in good agreement. As hydrogen chloride as additive is added into $H_{2}/O_{2}/N_{2}$ flames with low oxygen enrichments, its chemical effect causes the decrease of flame speed, radical concentration, and the NO production rate. It is found that the chemical effect of additive has much more influence on the reduction of EINO than its physical effect. However, in flames with very high flame temperature the physical effect rather than the chemical effect becomes more important on the reduction of EINO.

  • PDF

질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성 (CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame)

  • 이호현;오창보;황철홍
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

Dimethyl Ether(DME)의 증발과 거시적 분무 특성 (Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray)

  • 유준;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

유동층 연소로의 스케일-업을 위한 유동층 내 연료농도분포 해석 (Analysis on the fuel concentration distribution in a fluidized bed for the scale-up of a FBC)

  • 이동우;박승호
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.747-757
    • /
    • 1997
  • A numerical investigation of the fuel concentration field in a fluidized bed has been carried out for the scale-up of a fluidized bed combustor (FBC). A two-dimensional transient model is developed using the two-phase fluidization, a simple chemical reaction, and lateral solid mixing theories. The uniformity of fuel concentration distributions is controlled by the location and the number of fuel feeders, fluidizing velocities and the bed-heights. While larger bubbles owing to greater fluidizing velocities enhance the fuel-dispersion in the bed, they have adverse effects on fuel combustion and thus result in the increase of fuel concentration, since a greater bubble means a larger bypass which reduces gas-exchange rates between bubble and emulsion phases. Average or maximum values of the bed fuel concentration are utilized as criteria for the scale-up from a pilot/lab-scale to a commercial-size bed.