• Title/Summary/Keyword: Gas-phase

Search Result 3,258, Processing Time 0.031 seconds

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Comparative analysis of volatile and non-volatile flavor compounds in rice paste made by α-amylase according to cultivars (α-amylase를 이용하여 제조한 쌀 페이스트의 품종에 따른 휘발성비휘발성 향미성분 비교분석)

  • Son, Eun Young;Kim, Hye Won;Kim, Sun Ah;Lee, Sang Mi;Paek, Se Hee;Kim, Sun Hee;Seo, Yong Ki;Park, Hye-Young;Oh, Sea-Kwan;Kim, Young-Suk
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • Rice that the half of population in the world eats as a staple food is mostly produced and consumed in Asia. However, its consumption is nowadays decreasing mainly due to diet diversity. Accordingly, some attempts are in demand to enhance the utilization of rice. In this study, profiling of volatile and non-volatile flavor components in rice pastes obtained by ${\alpha}$-amylase was performed and compared according to nine different rice cultivars domestically cultivated in Korea using gas chromatography-mass spectrometry combined by solid phase microextraction and gas chromatography-time of flight-mass spectrometry after a derivatization, respectively. In total, 46 volatile compounds identified included 6 alcohols, 6 aldehydes, 4 esters, 4 furan derivatives, 4 ketones, 1 acid, 1 sulfur-containing compound, 7 hydrocarbons, 5 aromatics and 8 terpenes. The non-volatile flavor components found were composed of 12 amino acids, 6 sugars and 4 sugar alcohols. In principal component analysis, rice paste samples could be discriminated according to cultivars on the score plots of volatile and non-volatile flavor compounds. In particular, some volatile compounds such as pentanal and 4,7-dimethylundecane could contribute to distinguish Senong 17 white and Senong 17 brown, whereas ethanol, 6-methylhep-5-en-2-one, and tridecane could be highly related to the discrimination of Iipum from other cultivars. Among non-volatile compounds, some amino acids such as glycine, serine and ${\gamma}$-aminobutyric acid and some sugars such as sucrose and fructose were mainly responsible for the discrimination of Danmi from the other cultivars. On the other hand, galactose, arabitol and mannose were more closely related to Senong 17 white than Senong 17 brown.

Comparison of Gas Exchange Parameters between Same Volume of $N_2-O_2$ and Heliox Inhalation (동일한 상시 호흡량의 $N_2-O_2$ 및 Heliox 투여 시 가스교환지표의 비교)

  • Sohn, Jang-Won;Lim, Chae-Man;Koh, Youn-Suck;Lee, Jong-Deog;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.169-175
    • /
    • 1998
  • Background: Heliox is known to decrease $PaCO_2$ in patients with increased airway resistance by increasing minute ventilation and reducing work of breathing(WOB). Besides these effect, heliox is expected to decrease functional anatomic dead space owing to improvement of peak expiratory flow rate(PEFR) and enhancement of gas distribution. We investigated whether heliox can decrease $PaCO_2$ even at the same minute ventilation (VE) and WOB with $N_2-O_2$ to speculate the effect of the heliox on the anatomic dead space. Material and Method: The subjects were 8 mechanically ventilated patients with asthma or upper airway obstruction(M : F=5 : 3, $68{\pm}10$years) who were under neuromuscular paralysis. The study was consisted of three 15-minutes phases: basal $N_2-O_2$ heliox and washout Heliox was administered via the low pressure inlet of servo 900C, and respiratory parameters were measured by pulmonary monitor(CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). To obtain the same tidal volume(Vt) in heliox phase, the Vt on monitor was adjusted by the factor of relative flow rate of heliox to $N_2-O_2$. Dead space was calculated by Bohr equation. Results: 1) Vt, VE, peak inspiratory pressure(PIP) and peak inspiratory flow rate(PIFR) were not different between $N_2-O_2$ and heliox. 2) PEFR was higher on heliox($0.52{\pm}0.19$L/sec) than $N_2-O_2$($0.44{\pm}0.13$L/sec)(p=0.024). 3) $PaCO_2$(mmHg) were decreased with heliox($56.1{\pm}14.1$) compared to $N_2-O_2$($60.5{\pm}15.9$)(p=0.027). 4) Dead space ventilation(%) were decreased with heliox($73{\pm}9$ with $N_2-O_2$ and $71{\pm}10$ with heliox)(p=0.026). Conclusion: Heliox decreased $PaCO_2$ even at the same VE and WOB with $N_2-O_2$, and the effect was considered to be related with the reduction of anatomic dead space.

  • PDF

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

Laboratory Tests for Trichloroethylene (TCE) and Toluene Remediation in Soil Using Soil Vapor Extraction (토양증기추출(Soil Vapor Extraction)을 이용한 토양 내 Trichloroethylene (TCE)과 Toluene정화 실험)

  • 이민희;강현민
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • Column experiments were performed to evaluate the removal efficiency of soil vapor extraction (SVE) iota TCE (trichloroethylene) and toluene in soil. Homogeneous Ottawa sands and real soils collected from contaminated area were used to investigate the effect of soil properties and SVE operation conditions on the removal efficiency. In column teats with two different sizes of Ottawa sand, the maximum effluent TCE concentration in a coarse sand column was 442 mg/L and 337 mg/L in a fine sand column. However, after 20 liter gas flushing, the effluent concentrations were very similar and more than 90% of initial TCE mass were removed from the column. For two real contaminated soil columns, the maximum effluent concentration decreased 50% compared with that in the homogeneous Ottawa coarse sand column, but 99% of initial TCE mass were extracted from the column within 40 liter air flushing, suggesting that SVE is very available to remove volatile NAPLs in the contaminated soil. To investigate the effect of contaminant existing time on the removal efficiency, an Ottawa sand column was left stable for one week after TCE was injected and the gas extraction was applied into the column. Its effluent concentration trend was very similar to those for other Ottawa sand columns except that the residual TCE after the air flushing showed relatively high. Column tests with different water contents were performed and results showed high removal efficiency even in a high water content sand column. Toluene as one of BTEX compounds was used in an Ottawa sand column and a real soil column. Removal trends were similar to those in TCE contaminated columns and more than 98% of initial toluene mass were removed with SVE in both column.

Evaluation of the Potential of Nitrogen Plasma to Cosmetics (질소 플라즈마의 화장품 가능성 평가)

  • Lee, So Min;Jung, So Young;Brito, Sofia;Heo, Hyojin;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Lee, Mi-Gi;Bin, Bum-Ho;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Factors Affecting the Components of Chlorophyll Pigment in Spinach during Storage (저장 중 시금치의 클로로필 색소 성분에 영향을 주는 요인)

  • Choe, Eun-Ok;Lee, Hyeon-Gyu;Park, Kwan-Hwa;Lee, Sang-Hwa
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • Factors such as temperature $(20,\;60^{\circ}C)$), pH (4.5, 7.0), gaseous phase $(N_2,\;0_2)$, and light (0 lux, 5,000 lux), antioxidants and packaging conditions were investigated to study the effects of above factors on the chlorophyll components in spinach during storage. Regardless of other factors, as the storage temperature increased from $20^{\circ}C$ to $60^{\circ}C$ and pH decreased from 7.0 to 4.5, the contents of chlorophyll a and chlorophyll b in spinach decreased significantly (P<0.05). The amounts of chlorophyll a and chlorophyll b in spinach stored in nitrogen gas were significantly (P<0.05) lower than those in sample in oxygen phase. As the light intensity increased from 0 lux to 5,000 lux during storage, the contents of chlorophyll a and chlorophyll b in spinach significantly (P<0.05) decreased. The antioxidants reduced the degradation of chlorophyll a in a model system during dark storage by minimization of free radical oxidation. The effectiveness of antioxidants decreased as following orders; ${\alpha}-tocopherol$>ascorbic acid>${\beta}-carotene$>catechin>quercetin>rutin>kaempherol>caffeic acid>chlorogenic acid>p-coumaric acid>ferulic acid. The degradation of chlorophyll a in a model system during light storage was minimized by antioxidants due to the reduction of singlet oxygen oxidation. The antidiscoloring potential of antioxidants decreased as following orders; ${\beta}-carotene$>${\alpha}-tocopherol$>ascorbic acid>catechin>quercetin>rutin>kaem-pherol>caffeic acid>chlorogenic acid>p-coumaric acid>ferulic acid. The amounts of chlorophyll a and chlorophyll b in freeze dried spinach packed with polyethylene bag were significantly (P<0.05) lower than those in non-packed freeze dried spinach. The package of spinach in polyethylene bag with the combination of antioxidants could be used to minimize the degradation of chlorophyll components in spinach during storage.

  • PDF

The Effects of Eco-friendly Design of Dishwashing Detergent on Product's Carbon Emission Reduction (친환경 설계로 제조된 주방세제의 탄소배출량 감축 효과)

  • Kim, Jong Seok;Kim, Won Chan;Lee, Yong Ju;Kim, Heung Sik;Park, Heon Young;Yang, Bong Sig;Kim, Wan Soo;Park, Pil Ju;Hong, Eun Ah
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • As negative effects of climate change have been visualized and its direct damages to economy have been realized, the global efforts to respond to climate change by reducing greenhouse gas emission were accelerated. Korea's Carbon Footprint Labeling gets a lot of attention as one of the effective methods to contribute to national GHG reduction goal, and for enterprises to show customers how much effort the company put into global warming prevention. Consumers' interest on low-carbon products has been increasing. This study uses Life Cycle Assessment method to calculate the amount of carbon emission of dishwashing detergent, LG Household & Healthcare, which reduced carbon emissions by using raw materials that has relatively lower environment load. Life Cycle Assessment Method is based on guidelines of Carbon Footprint Labeling, Ministry of Environment, and pre-manufacturing, manufacturing, and disposal phase are included while use phase of the product is excluded from assessment. In order to understand the effects of eco-design on carbon emissions, the dishwashing detergent's carbon emissions are compared before and after the change of main raw materials. The result shows the improvement from $0.47kgCO_2eq/kg$ to $0.38kgCO_2eq/kg$ per product, and this means the main raw materials' carbon emissions could be reduced by around 9.4%, which is equivalent to 916tons of GHG emissions per year.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.