• Title/Summary/Keyword: Gas-liquid hybrid

Search Result 30, Processing Time 0.027 seconds

A Study on the Effects of LPDi System Application in 2.0L Hybrid Vehicles Using Energy Flow Analysis (에너지 흐름 분석을 이용한 2.0L 급 하이브리드 차량에서의 LPDi 시스템 적용 효과 연구)

  • Young kuk An;Bonseok Koo;Jinil Park
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • This study investigates the performance of 2.0L hybrid vehicles equipped with Liquefied Petroleum Gas (LPG) fuel engines, using energy flow analysis. By incorporating a direct LPG injection system (LPDi), the research aims to overcome the reduced maximum output commonly associated with LPG engines. Moreover, the integration of a hybrid system is explored as a means to enhance vehicle fuel economy while reducing CO2 and emissions. The study employs data from FTP-75 and HWFET driving cycle to inform future research efforts focused on predicting CO2 emissions and fuel economy for Hybrid Electric Vehicles utilizing LPG Direct Injection. The findings offer insights into optimizing fuel systems for better environmental and operational performance in hybrid vehicles.

Evaluation of energy consumption of gas hydrate and reverse osmosis hybrid system for seawater desalination (해수담수화 공정을 위한 가스하이드레이트-역삼투 공정의 에너지 소모량 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

A Study on Combustion Characteristic with the Variation of Oxidizer phase in Hybrid Rocket Motor using PE/$N_2O$ (PE/$N_2O$ 하이브리드 로켓에서의 산화제 상 변화에 따른 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Gi-Hun;Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • The purpose of this paper is to study combustion characteristics with the different phase of oxidizer in hybrid rocket combustion. HDPE(High Density Polyethylene) as fuel and $GN_2O$(Gas $N_2O$), $LN_2O$(Liquid $N_2O$) as oxidizer were used to perform the experiments. An investigation was performed for a change of the regression rate, pressure of combustion chamber and combustion efficiency according to the variation of oxidizer phase. In case of using $LN_2O$ as oxidizer, the regression rate is not significantly different from using $GN_2O$ as oxidizer. It is considered that combustion energy is much larger than latent heat energy which was used in the evaporation of liquid oxidizer. However propulsion performance efficiency for $LN_2O$ showed lower value than for $GN_2O$. By increasing the flow rate of liquid oxidizer, heat transfer needed for vaporization of liquid oxidizer was increased, which resulted in the growth of combustion instability.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.

Analysis of Energy Consumption Efficiency for a Hybrid Electric Vehicle According to the Application of LPG Fuel in WLTC Mode (WLTC 모드에서의 LPG 연료 적용에 따른 하이브리드 자동차 에너지소비효율 분석)

  • Jun Woo, Jeong;Seungchul, Woo;Seokjoo, Kwon;Se-Doo, Oh;Youngho, Seo;Kihyung, Lee
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.195-202
    • /
    • 2022
  • Recently, the global automobile market is rapidly changing from internal combustion engine vehicles to eco-friendly vehicles including electric vehicles. Among eco-friendly vehicles, LPG vehicles are low in fine dust and are suggested as a realistic way to replace diesel vehicles. In addition, it is more economical than gasoline in its class, showing a cost-saving effect. In Korea, the business of converting gasoline into LPG is active. Research is being conducted to apply this to hybrid vehicles. In this study, the difference in energy consumption efficiency was analyzed when LPG fuel was applied by selecting a 2-liter GDI hybrid electric vehicle. The operation of the hybrid system according to various driving characteristics was confirmed by selecting the WLTC mode. As a result, it was confirmed that the BSFC was about 5% lower than that of gasoline fuel when using LPG fuel. This is due to the active operation of the motor while driving. Optimization is required as battery consumption increases from an energy perspective.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF

Assessment of Prediction Ability of Atomization and Droplet Breakup Models on Diesel Spray Dynamic (디젤분무에서 미립화 및 액적분열모델의 예측능력평가)

  • Kim, J.I.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2000
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristics. Of the many atomization and droplet breakup models based on the breakup mechanism due to aerodynamic liquid and gas interaction, four models classified as mathematical models, such as TAB, modified TAB, DDB, WB and one of the hybrid model based on WB and TAB models were selected for the assessment of prediction ability of diesel spray dynamics. The assessment of these models by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and sauter mean diameter(SMD) from the literature. It is found that the prediction of spray tip penetration and SMD by the hybrid model was only influenced by the initial parcel number. All the atomization and droplet breakup models considered here was strongly dependent on the grid resolution. Therefore it is important to check the grid resolution to get an acceptable results in selecting the models. At low injection pressure, modified TAB model could only give the good agreement with experimental data of spray tip penetration and both of modified TAB and DDB models were recommendable for the prediction of SMD. At high injection pressure, hybrid model could only give the good agreement with the experimental data of spray tip penetration and the prediction of all of the selected models did not match the experimental data. Spray tip penetration was increased with the increase the $B_1$ and the increase of $B_1$ did not affected the prediction of SMD.

  • PDF

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.