• Title/Summary/Keyword: Gas-jet model

Search Result 111, Processing Time 0.037 seconds

Reduction of Grid Size Dependency in DME Spray Modeling with Gas-jet Model (가스 제트 모델을 이용한 DME 분무 해석의 격자 의존성 저감)

  • Oh, Yun-Jung;Kim, Sa-Yop;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • This paper describes the grid-size dependency of the conventional Eulerian-Lagrangian method to spray characteristics such as spray penetration and SMD in modeling DME sprays. In addition, the reduction of the grid-size dependency of the present Gas-jet model was investigated. The calculations were performed using the KIVA code and the calculated results were compared to those of experimental result. The results showed that the conventional Eulerian-Laglangian model predicts shorter spray penetration for large cell because of inaccurate calculation of momentum exchange between liquid and gas phase. However, it was shown that the gas-jet model reduced grid-size dependency to spray penetration by calculating relative velocity between liquid and ambient gas based on gas jet velocity.

A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model (가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구)

  • Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Study of Spray Droplet/Wall Interaction (분무액적과 벽의 상호작용에 대한 연구)

  • 양희천;유홍선;정연태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

A Case Study of Jet fire Estimation Model on the High Pressurized Pipeline of Natural Gas (고압가스배관의 제트화재 예측모델에 관한 사례연구)

  • Lee, Sang-Gon;Kim, Dong-Sung;Hwang, Cheol-Seung;Cho, Won-Cheol;Lee, Tae-Shik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.371-375
    • /
    • 2007
  • Due to the benefit of QRA(Quantitative Risk Analysis) method, we can evaluate the risk, and it helps us to make our safe. We also depend to some of correlation equations to assess the jet fire at high pressurized transmission line. However, we can evaluate the risk within limitations. After comparing the current model to investigation report of natural gas transmission line accident at EL-Paso in U.S., this study concludes that more research and study are required because currently developed model cannot expect factors of the fire risk such as flame configuration.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

Quantitative Analysis of Thermal Radiation in Flare Stack (플레어스택의 정량적인 복사열 분석)

  • Jung, Sang-Yong;Lee, Heon-Seok;Kim, Bum-Su;Yoo, Jin-Hwan;Park, Chul-Hwan;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The most important element for improving the process safety that occurs from the flare system installed to convert into safe materials by burning the inflammable or toxic gases within the process and this is specified in the API 521 Code so that the radiation does not cause a risk factor. The flames that occur from the flare stack holds the shape of jet fire due to the pressure and flow velocity of discharge gas. This study has identified the shape of flames by using the Chamberlain Model rather than the API 521 Code method, analyzing the radiation due to this.

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.