• Title/Summary/Keyword: Gas-combined

Search Result 954, Processing Time 0.025 seconds

Effect of a Combined Treatment of High Hydrostatic Pressure and Carbonation on the Quality Characteristics of Valencia Orange Juice (초고압과 Carbonation의 병합처리가 오렌지쥬스의 품질 특성에 미치는 영향)

  • Yun, Hye-Suk;Park, Seok-Jun;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.974-981
    • /
    • 1997
  • A combined treatment of high hydrostatic pressure and carbonation was used to inactivate pectinesterase (PE) and sterilize microorganisms in Valencia orange juice without major changes in its nutritive components. Quality characteristics of Valencia orange juice, such as microorganisms, PE activity, vitamin C content and color, were evaluated after it was treated with pressure, carbonation-and-pressure, and heat. Quality changes during storage at $4^{\circ}C$ and $30^{\circ}C$ after the treatments were also investigated. Pressurized orange juice (pressurized at 600 MPa for 10 min at $20^{\circ}C$) showed 7.0% residual PE activity, while the carbonated-and-pressurized orange juice (207 $kPa-CO_2$ gas pressure, pressurized at 600 MPa for 10 min at $20^{\circ}C$) showed 0%. Pressurization at 400 MPa or higher decreased the population of microorganisms in the orange juice to less than 10 CFU/mL. Carbonated-and-pressurized orange juice showed slight decrease in vitamin C content when stored at both $4^{\circ}C\;and\;30^{\circ}C$. While heat-treated ($90^{\circ}C$ for 60 sec) orange juice showed 75% decrease in vitamin C content when stored at $30^{\circ}C$. L value (lightness) and b value (yellowness) of carbonated-and-pressurized orange juice were higher than those of heat-treated orange juice when they were stored at $4^{\circ}C$ for 30 days.

  • PDF

Analysis of the Impact of the 8th Basic Plan for Long-term Electricity Supply and Demand on the District Heating Business Through Optimal Simulation of Gas CHP (가스 열병합발전 최적 시뮬레이션 분석을 통한 집단에너지 사업자에 미치는 8차 전력 수급계획의 영향 분석)

  • Kim, Young Kuk;Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.655-662
    • /
    • 2018
  • To respond effectively to climate change following the launch of the new climate system, the government is seeking to expand the use of distributed power resources. Among them, the district heating system centered on Combined Heat and Power (CHP) is accepted as the most realistic alternative. On the other hand, the government recently announced the change of energy paradigm focusing on eco-friendly power generation from the base power generation through $8^{th}$ Basic Plan for Long-term Electricity Supply and Demand(BPE). In this study, we analyzed the quantitative effects of profit and loss on the CHP operating business by changing patterns of the heat production, caused by the change of energy paradigm. To do this, the power market long-term simulation was carried out according to the $7^{th}$ and $8^{th}$ BPE respectively, using the commercialized power market integrated analysis program. In addition, the CHP operating model is organized to calculate the power and heat production level for each CHP operation mode by utilizing the operating performance of 830MW class CHP in Seoul metropolitan area. Based on this, the operation optimization is performed for realizing the maximum operating profit and loss during the life-cycle of CHP through the commercialized integrated energy optimization program. As a result, it can be seen that the change of the energy paradigm of the government increased the level of the ordered power supply by Korean Power Exchange(KPX), decreased the cost of the heat production, and increased the operating contribution margin by 90.9 billion won for the 30 years.

A Study on Competitiveness and GHG Mitigation Effect of IGCC and Carbon Capture Technology According to Carbon Tax Change (탄소세 변화에 따른 IGCC와 이산화탄소 저감기술 진입경쟁력 및 온실가스 저감효과 분석)

  • Jeon, Young-Shin;Kim, Young-Chang;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.54-66
    • /
    • 2008
  • After the Kyoto Protocol has been ratified in Feb. 16 2005, the developed countries which is involved in Annex-1 have tried to mitigate GHG to the reduction objective. To accomplish this objective, EU developed EU-ETS, CDM project, and so on. Korea has faced pressure to be a member of Annex-1, because Korea and Mexico are only non-Annex-1 countries in the OECD nations. In this study, we simulated power plant expansion plan and calculated $CO_2$ emission with changing Carbon Tax. Especially, we focused on the competitiveness of IGCC and carbon capture technology. In our result, even though carbon tax rise, nuclear power plant does not always increase, it increase up to minimum load. LNG combined cycle power plants substitute the coal fired power plants. If there are many alternatives like IGCC, these substitute a coal fired power plant and we can reduce more $CO_2$ and save mitigation cost.

Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test (액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Hong, Seok-Jong;Choi, Seok-Weon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • A cooling system utilizing liquid helium to chill the cryopanel (800 mm $\times$ 700 mm dimensions) down to 4.2 K was designed, implemented, and tested to verify the role of the cryopanel as a heat sink for the payload of a spacecraft inside the large thermal vacuum chamber (effective dimensions : 8 m ($\Phi$) $\times$ 10 m (L)) of KARI (Korea Aerospace Research Institute). Two LHe (Liquid Helium) Dewars, one for the main supply and the other for refilling, were used to supply liquid helium or cold helium gas into this cryopanel, and flow control for the target temperature of the cryopanel within requirements was done through fine adjustment of the pressure inside the LHe Dewars. The return helium gas from the cryopanel was reused as a thermal barrier to minimize the heat influx on the core liquid helium supply pipe. The test verified a cooling time of around three hours from the ambient temperature to 40 K (combined standard uncertainty of 194 mK), the capacity for maintaining the cryopanel at intermediate temperatures, and a 1 K uniformity over the entire cryopanel surface at around 40 K with 20 W cooling power.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

Reoxygenation Stimulates EDRE(s) Release from Endothelial Cells of Rabbit Aorta

  • Suh, Suk-Hyo;Han, Jae-Jin;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.393-404
    • /
    • 1999
  • We have reported that hypoxia stimulates EDRF(s) release from endothelial cells and the release may be augmented by previous hypoxia. As a mechanism, it was hypothesized that reoxygenation can stimulate EDRF(s) release from endothelial cells and we tested the hypothesis via bioassay experiment. In the bioassay experiment, rabbit aorta with endothelium was used as EDRF donor vessel and rabbit carotid artery without endothelium as a bioassay test ring. The test ring was contracted by prostaglandin $F_{2a}\;(3{\times}10^{-6}\;M)$ which was added to the solution perfusing through the aorta. Hypoxia was evoked by switching the solution aerated with 95% $O_2/5%\;CO_2$ mixed gas to one aerated with 95% $O_2/5%\;CO_2$ mixed gas. Hypoxia/reoxygenation were interexchanged at intervals of 2 minutes (intermittent hypoxia). In some experiments, endothelial cells were exposed to 10-minute hypoxia (continuous hypoxia) and then exposed to reoxygenation and intermittent hypoxia. In other experiments, the duration of reoxygenation was extended from 2 minutes to 5 minutes. When the donor aorta was exposed to intermittent hypoxia, hypoxia stimulated EDRF(s) release from endothelial cells and the hypoxia-induced EDRF(s) release was augmented by previous hypoxia/reoxygenation. When the donor aorta was exposed to continuous hypoxia, there was no increase of hypoxia-induced EDRF(s) release during hypoxia. But, after the donor aorta was exposed to reoxygenation, hypoxia-induced EDRF(s) release was markedly increased. When the donor aorta was pretreated with nitro-L-arginine $(10^{-5}$ M for 30 minutes), the initial hypoxia-induced EDRF(s) release was almost completely abolished, but the mechanism for EDRF(s) release by the reoxygenation and subsequent hypoxia still remained to be clarified. TEA also blocked incompletely hypoxia-induced and hypoxia/reoxygenation-induced EDRF(s) release. EDRF(s) release by repetitive hypoxia and reoxygenation was completely blocked by the combined treatment with nitro-L-arginine and TEA. Cytochrome P450 blocker, SKF-525A, inhibited the EDRF(s) release reversibly and endothelin antgonists, BQ 123 and BQ 788, had no effect on the release of endothelium-derived vasoactive factors. Superoxide dismutase (SOD) and catalase inhibited the EDRF(s) release from endothelial cells. From these data, it could be concluded that reoxygenation stimulates EDRF(s) release and hypoxia/reoxygenation can release not only NO but also another EDRF from endothelial cells by the production of oxygen free radicals.

  • PDF

Revegetation and human( II ) -Revegetation of volcanic denuded land- (녹화(綠化)와 인간(人間)( II ) -화산성(火山性) 황폐지(荒廢地)의 녹화(綠化)-)

  • Ezaki, Tsugio;Iwamoto, Tohru;Yea, Sun-Young;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.88-103
    • /
    • 2001
  • It is one of the important tasks to accurately grasp features of the devastated land to revegetate the denuded, volcanic land. In the present report three factors of such features were discussed : the ash fall phenomenon the overflow of surface water, and the generation of sulfurous acid gas, which are all usual, harmful factors for the successful growth of introduced plants to such area. In addition, it is indicated that to overcome those harmful factors some artificial tools should be applied in such regions before the introduction of pioneer tree species such as Pinus thunbergii and etc. In our three-year pilot study it is found out that the use of mulching sheets developed originally by research members combined together with symbiotic microorganisms such as Pisolithus tinctorus Coker et Couch f. tinctorius was very effective. Experimental plots surveyed throughly in Mt. Fugendake in Nagasaki Prefecture and Mt. Sakurajima in Kagoshima Prefecture showed successful revegetation as models. Finally, for the revegetation of the denuded, volcanic land it is recommended that mulching sheets should be used together with symbiotic microorganisms.

  • PDF

A Study of Post Electrode Formation by Microwave Sintering in LTCC Substrate (마이크로파 소결법을 이용한 LTCC 기판 Post 전극 형성에 관한 연구)

  • Kim, Yong-Suk;Lee, Taek-Jung;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Sung-Yeol;Oh, Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2007
  • This study is focused on the effect of the surface properties for the post electrode, which is used in pad formation consisted of SMT such as IC, passive component, combined with fired LTCC substrate, We carried out the surface microstructure of sintered electrode and the basic reliability evaluations with sample fired by microwave sintering to solve the problems occurred in post electrode by electric sintering. We evaluated surface densification status of post electrode according to various conditions of microwave sintering. In additions, it is obtained strong effect on blister improvement of post electrode because of over-sintering and the insufficient out gas in bum out process. As a result of adhesion strength, we confirmed $44.3N/mm^2$ in microwave sintering and $34.5N/mm^2$ in electric sintering, respectively. This result will be used for the basic reliability test. Finally, microwave sintering seems to be economic in process time with 30 min compared to electric sintering with 10 hr. In terms of Mass production and efficiency, microwave sintering are excepted to be higher than electric sintering.

  • PDF

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.