• Title/Summary/Keyword: Gas-atomization

Search Result 397, Processing Time 0.022 seconds

Comparisons of Diesel and DME Fuel in Macroscopic Spray Characteristics (디젤 및 DME 연료의 거시적 분무특성 비교)

  • Park, Junkyu;Chon, Munsoo;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.205-209
    • /
    • 2012
  • This study focused on comparing macroscopic characteristics of DME and diesel fuel experimentally. DME fuel is one of the most promising alternative fuels because of its superiority in atomization characteristic and clearness in terms of exhaust gas compared with existing fossil fuels. In addition, DME fuel has high cetane number so it could be applied to compression ignition engine. However because DME fuel exists in gas phase at room temperature and atmospheric pressure, and it corrodes rubber parts of fuel line, DME fuel is hard to apply to commercial vehicles. To establish knowledge about DME fuel and furthermore, to develop commercial DME vehicles such as passenger cars, many research have been proceeded steadily. The present study, by comparing spray characteristics of DME fuel to those of diesel fuel, improved atomization characteristics in DME were revealed. Injection quantity measurement and spray visualization experiment were progressed and it was revealed that DME fuel shows small injection quantity than that of diesel fuel and axial development of spray in terms of spray tip penetration decreases when DME fuel was injected.

Numerical Simulation on a Reacting Flow Field with Various Injection conditions (소형가스터빈용 인젝터의 분무 특성에 따른 반응 유동장 전산 해석)

  • Kim, Sei-Hwan;Jeung, In-Seuck;Park, Hee-Ho;Na, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.300-303
    • /
    • 2010
  • This work shows the result of numerical simulation on a reacting flow by varying atomization properties which can be obtained from a injector for a small and low power aircraft gas turbine engine. Because the atomization properties mainly affect on the performance of the engine, a lot of efficiency tests are needed when a new injector is developed. Nowadays researches has been actively performed using computational analysis. Using commercial package CFD-ACE+, basic studies on the reacting flow field have been conducted. Those results show that the reaction rate is increased when higher pressure and wider angle spray condition are used. More smaller parcels can also enhance the fuel-air reaction.

  • PDF

A Study for Improving Spray Uniformity of the SECFR System for Vehicle Applications (SECFR 시스템의 차량적용을 위한 분무균일도향상에 관한 연구)

  • Shon, J.W.;Woo, S.C.;Kim, S.G.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • Lower recirculated gas temperature at EGR system reduces NOx and PM emissions. However, EGR Cooler can be polluted by PM generated from recirculated EGR gas, and it reduces cooling efficiency and the amount of EGR gas simultaneously. The SECFR(Steam EGR Cooler Fouling Remover) system which uses the evaporated washer fluid steam caused by high temperature of EGR gas was manufactured for removing fouling generated on the cooler surface. Since an injection pressure of wind shield washer fluid in the vehicle is approximately 0.5 bar, it is not enough to atomize the injected washer fluid. Thus, it is necessary to apply a method to atomize the washer fluid. In this study, the impinging plate was used to promote the atomization of spray washer fluid for the purpose of apply SECFR system to vehicles and measured the DAR(Droplet Area Ratio) and DUI(Droplet Uniformity Index) through the spray visualization.

The Aging Characteristics of Mg-6 wt.% Al-1 wt.% Zn Alloy Prepared by Gas Atomization (가스분사법으로 제조된 Mg-6 wt.% Al-1 wt.% Zn 합금의 시효특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 $\mu m$ in diameter. After compaction under the pressure of 700 MPa at $320^{\circ}C$ for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 $\mu m$ which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.

Characteristic of Liquid Jet in Subsonic Cross-flow (횡단가스 유동에 분사되는 액체제트의 분무특성)

  • Ko, Jung-Bin;Lee, Kwan-Hyung;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

Fabrication and Dynamic Consolidation Behaviors of Rapidly Solidified Mg Alloy Powders (급속응고 Mg 합금분말의 제조 및 동적성형특성)

  • Chae, Hong-Jun;Kim, Young-Do;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.340-346
    • /
    • 2011
  • In order to improve the weak mechanical properties of cast Mg alloys, Mg-$Zn_1Y_2$ (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 ${\mu}m$ in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.

Characteristics of Ti-Ni-(XCu) Shape Memory Alloy Powders made by Gas Atomization Process (가스 분무법으로 제조한 Ti-Ni-XCu 형상기억합금분말의 특성)

  • 징동훈
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • Ti-45.2at.%Ni-5at.%Cu and Ti-40.2at.%Ni-10atat.%Cu alloy powders were fabricated by gas atomization process. The microstructures, Shape, hardness and phase transformation behaviors of the powders were investigated by means of optical microscopy, scanning electron microscopy, micro-hardness measurement, x-ray diffraction analyses and differential scanning calorimetry. The hardness of the Ti-Ni-XCu alloy powders decreased as Cu-content increased. The x-ray diffraction analyses were carried out for powders without heat treatment, and those that treated at 85$0^{\circ}C$ for an hour in a vaccum state($10^5$ torr) and then quenched into ice water. The intensity of B$19^t$ phase increased with heat treating. The monoclinic B$19^t$ martensite was formed in the Ti-Ni-XCu alloy powders during cooling.

  • PDF

Effect of Oxygen on Mechanical Properties of Metal Injection Molded Titanium and Titanium Alloy

  • Doi, Kenji;Hanami, Kazuki;Tanaka, Hideki;Teraoka, Tsuneo;Terauchi, Shuntaro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.771-772
    • /
    • 2006
  • Mechanical properties of metal injection molded titanium and titanium alloy parts were investigated in this study. Material powders with low oxygen content and spherical shape were obtained by electrode induction-melting gas atomization which could melt and atomize titanium and titanium alloy bars with no touch on crucible or tundish. Tensile specimens were fabricated from obtained powders by metal injection molding process. Tensile strength of the specimens increases with increasing oxygen content. This result corresponds to a tendency of wrought metal.

  • PDF

EFFECT OF POWDER SHAPE AND SINTERING TEMPERATURE ON THE PREPARATION OF Ni-BASED POROUS METAL

  • YU-JEONG YI;MIN-JEONG LEE;HYEON-JU KIM;SANGSUN YANG;MANHO PARK;BYOUNG-KEE KIM;JUNG-YEUL YUN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.917-920
    • /
    • 2019
  • Usually porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability for exhaust gas filter, hydrogen reformer catalyst support. The Ni alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. In this study, the Ni-based porous metals have been developed with Hastelloy powder by gas atomization and water atomization in order to find the effects of powder shape on porous metal. Each Hastelloy powder is pressed on disk shape of 2 mm thickness with 12 tons using uniaxial press machine. The specimens are sintered at various temperatures in high vacuum condition. The pore properties were evaluated using Porometer and microstructures were observed with SEM.

The Study on the Spray Characteristics of Supercritical Spray (초임계상태 분무의 분무 특성에 관한 연구)

  • Park, C.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The characteristics of the breakup process in supercritical spray is investigated during the injection of supercritical sulfur hexafluoride into dissimilar gases at supercritical pressures and subcritical temperature of the injected fluid. The visualization techniques used are backlighting and shadowgraph methods. The spray angles are measured and the breakup and mixing process are observed at near and supercritical conditions. The results show that spray angles are decreased with the in..ease of the ratio of density $(\frac{\rho_f}{\rho_g})$. At the supercritical temperature, the spray angles in atomization region are kept nearly constant such as the typical spray angle in gas injection. The mixing process is changed radically at the temperature where $\frac{d\rho}{dT}=\frac{1}{2}[\frac{d\rho}{dT}]_{max}$ at given pressure.

  • PDF