• Title/Summary/Keyword: Gas-Liquid Two Phase Flow

Search Result 210, Processing Time 0.031 seconds

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe (기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정)

  • Choi, Sung Hwan;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

Gas-Liquid Two-Phase Flow at Hyper-Gravity Conditions (과중력 환경에서의 기액이상류)

  • Choi, Bu-Hong;Choi, Ju-Yeol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.59-60
    • /
    • 2006
  • Some useful flow regime data are obtained from the experiments using the flight producing hyper-gravity(2g) conditions and on ground(1g) with the identical flow conditions. The flow regime data obtained at 1g and 2g conditions are compared with new dimensionless flow regime map using Fr, Bo and We number related with gravity, surface tension and inertia force.

  • PDF

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF

A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system (2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF