• 제목/요약/키워드: Gas-Liquid Two Phase Flow

검색결과 210건 처리시간 0.011초

기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구 (A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors)

  • 이강영;정하동;강철웅;안규복
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델 (GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW)

  • 신병록
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

압축성 기-액 이상매체중의 고속 유동현상 (HIGH-SPEED FLOW PHENOMENA IN COMPRESSIBLE GAS-LIQUID TWO-PHASE MEDIA)

  • 신병록
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.249-257
    • /
    • 2007
  • A high resolution numerical method aimed at solving gas-liquid two-phase flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

  • PDF

Application of Preconditioning Method to Cavitating Flow Computation

  • Shin, Byeong-Rog
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1903-1908
    • /
    • 2004
  • A preconditioned numerical method for gas-liquid two-phase flows is applied to solve cavitating flow. The present method employs a finite-difference dual time-stepping integration procedure and the MUSCLTVD scheme. A homogeneous equilibrium cavitation model is used. The present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at low Mach number. Some internal flows such as convergent-divergent nozzles are computed using this method. Comparisons of predicted and experimental results are provided and discussed.

  • PDF

수직상향 기액이상류의 유동특성 (Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석 (A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow)

  • 최부홍
    • 해양환경안전학회지
    • /
    • 제15권1호
    • /
    • pp.63-69
    • /
    • 2009
  • 가스상의 체적분율과 압력강하는 기액이상류에 대한 이해와 예측에 있어서 매우 중요한 인자이다. 또한 그것들은 산업용 대용량의 열교환시스템 및 선박에 설치되는 보일러 및 냉동시스템의 설계에 있어서 필수적인 항목이다. 따라서 본 논문에서는 파이프의 모든 경사각도에서 기액이상류 가스상의 체적분율과 압력손실을 예측할 수 있는 이론적 해석 방법을 제시한다. 여기서의 이론적 해석은 2유체 층상류 모델을 기초로 하고 있다. 또한 이론적 해석결과와 기존의 실험결과와 비교한 결과에 대해서도 제시한다.

  • PDF

Gravity Level Dependency of Gas-Liquid Two-Phase Flow

  • Choi, Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.487-493
    • /
    • 2003
  • More reliable design of thermal transport. Power acquisition and thermal management systems requires the through understanding of the flow hydrodynamic. the differences and similarities between the two-phase flow characteristics of two-Phase flow influenced by the gravity levels. The data of flow Patterns, void fraction, frictional pressure drop associated with their characteristics were obtained at $\mu\textrm{g}$. 1g and 2g. Flow patterns and void fraction data obtained at three gravity levels were compared with each other and previous models and correlations.

2중판 오리피스를 이용한 기액 2상유량계의 개발 (Development of a 9as-liquid two-phase flowmeter using double orifice plates)

  • 이상천;이상무;남상철
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF