• Title/Summary/Keyword: Gas-Liquid

Search Result 2,862, Processing Time 0.025 seconds

Instability analysis of gas injection into liquid (액상으로 분사되는 기체의 불안정성 해석)

  • Kim Hyung-Jun;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.57-60
    • /
    • 2006
  • The instability analysis of submerged gas flow into liquid is studied, which assumes gas and liquid as viscous and irrotational. At low mass flow rate of gas, injected gas plume is collection of bubbles, and increase of gas flow rate makes plume as a jet. It is well known that the transition from bubbling to jetting occurs in the transonic region. But previous works neglect viscous effect of gas flow into liquid. This paper concerns about an application of viscous potential flow theory in cylindrical gas flow into liquid. The growth rate versus wave number and mach number is compared with various condition including inviscid and viscous flow.

  • PDF

A Study on the Method for Releasing the Internal Pressure of the Propane Cylinder caused by Liquid Expansion (액팽창을 고려한 프로판용기의 내압 해소방안에 대한 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Park, Gi-Dong;Kim, Ki-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • Liquefied petroleum gas can be charged up to 85% of cylinder volume by enforcement regulations of safety control and business of liquefied petroleum gas act. The charged mass by enforcement regulations is considered by liquid expansion of internal liquefied petroleum gas at $65^{\circ}C$. But the temperature of liquid would not be suspended under $65^{\circ}C$ in a cylinder or portable vessel at certain situation. In the thermodynamics view point, the cylinder can be exposed to high pressure by liquid expansion. Consequently, it can be possible to potential risk such as physical explosion. Hence, this paper will offer a method of estimated internal pressure by liquid expansion at critical state in the closed system. Also, the structural factor which is given rise to volume increasement of cylinder is offered by experiment. This paper is expected as crucial reference for a cylinder design of liquefied petroleum gas.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW (캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델)

  • Shin, Byeong-Rog
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

An Experimental Study of Liquid.Gas Heat Exchange Pipe Inserted Capillary Tube for Room Air-Conditioner (모세관 삽입 룸 에어컨용 액.가스 열교환 배관에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.702-708
    • /
    • 2006
  • This study shows the experimental characteristics of the double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for circulating of a liquid of high temperature, pressure and a gas of low temperature, pressure at the same time. So the functions of pipe and pipe's expansion and heat transfer are presented simultaneously. In the result, the temperature of gas refrigerant at the inlet of compressor increased about $5^{\circ}C$ by the heat transfer with liquid refrigerant in case of the double pipe. And liquid gas refrigerant which the temperature at the inlet of evaporator decreased about $3^{\circ}C$ comparing with the existing type flows into an evaporator COP of the double pipe increased about $7{\sim}10%$ comparing with that of the conventional pipe. And the noise of the double pipe at capillary tube is less than that of the conventional type about 3dB. Consequently. it is convinced the superiority of the double pipe in the heat loss and soundproofing aspect.

Flow Characteristics of Vertical Upward Gas-Liquid Two-Phase Flow (수직상향 기액이상류의 유동특성)

  • Choi Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2005
  • This paper deals with the flow characteristics of air-water two-phase flow in a vertical tube of 10mm I.D. and 600mm in length at an adiabatic condition. The obtained experimental data were covered with the liquid superficial velocity ranging from 0.095m/s to 2.56m/s. and the gas superficial velocity ranging from 0.032m/s to 21.08m/s. The effects of the gas and liquid superficial velocity on the flow pattern transitions, frictional pressure drop, and film thickness and gas-liquid interface roughness were also examined. It was found that the film thickness increased and the liquid film wave length was more longer with the liquid superficial velocity $j_L$ increasing at $j_G$ constant. It was also showed that the frictional pressure drops were experienced in three regions. namely increasing region(bubbly flow), decreasing region (Taylor bubble and slug flows) and re-increasing region (annular flow).

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

A Study on the Thrust Throttling Using Gas Injection in Swirl Injectors (기체주입을 이용한 와류형 분사기들에서의 가변추력 연구)

  • Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • Thrust throttling in a liquid rocket engine can be implemented via several ways such as high pressure drop injector, dual manifold, multiple chamber, pintle injector, and gas injection. Thrust throttling using gas injection controls thrust by usually injecting inert gas into propellant through an aerator to reduce the propellant's bulk density. In this study, the outside-in aerator was used in the propellant line to create two phase flow. Closed-type, open-type, and screw-type bi-swirl coaxial injectors were utilized for investigating throttling characteristics such as pressure drop, mixture density, and discharge coefficient according to gas-liquid mass ratio.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

Multichannel Liquid Phase Microextraction System (다채널 액상 미세 추출 시스템 설계 및 제작)

  • Zhang, XinJie;Cheng, Shuo;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, a multichannel gas-liquid microextraction system is designed by integrating the automatic elution of extraction line and multichannel gas-purging liquid phase microextraction. The system uses an injection pump and inert gas to push the extraction solvent to a sample bottle of a gas-phase color autosampler and then implements multichannel gas-liquid microextraction and gas chromatography-mass spectrometry. The system also employs a three-way integrated micro-high-temperature heater, syringe pump, and microflow controller to realize the simultaneous processing of multiple groups of samples, thus improving the sample pretreatment speed and reproducibility and reducing human error. Autoinjection experiments were implemented with polycyclic aromatic hydrocarbon standard samples. The experiments show that the average recovery rate of the system exceeds 70%, and the relative standard among the channels is less than 15%.

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF