• Title/Summary/Keyword: Gas welded joint

Search Result 61, Processing Time 0.024 seconds

Laser Weldability of Sheet steels for Tailored Blank Manufacturing(1) (테일러드 블랭크용 박판 강재의 레이저 용접성 (1))

  • 김기철
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.77-87
    • /
    • 1998
  • This paper deals with the effect of laser welding parameters on the weld formation. Thin steels for automotive application were prepared so as to be welded with high power carbon dioxide laser system. Major process parameters were position of focus and travel speed. The effect of shielding gas was also discussed by employing the high speed photometry. Test results showed that the optimal position of focus varied in accordance with the joint configuration; bead-on-plate, butt or lap welding. It was recommended that the position of focus for the lap welding be located at slightly inner part of the material to be welded. In this case, however, it was noticeable that the weld penetration ratio, d/t$_{0}$ dropped drastically at the critical region. Results also demonstrated that both the bead width and penetration reduced as the travel speed increased. The penetration ratio showed two distinct regions; stabilized zone at the lower range of the travel spped and sudden drop zone at the higher range of travel speed. Lower limit of the penetration for acceptable weld was proved to be about 90% of the parent metal thickness based on the physical properties of the weld. Mixed gas application for both the shielding of molten metal and laser induced plasma control was recommended as far as the penetration was concerned.d.

  • PDF

Fatigue behavior of mechanical structures welded with different filler metal

  • Alioua, Abdelkader;Bouchouicha, Benattou;Zemri, Mokhtar;IMAD, Abdellatif
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper describes an investigation on the effect of using three different filler metals on fatigue behavior of mechanical structures welded. The welding is carried out on the steel A510AP used for the manufacture of gas cisterns and pipes. The welding process used is manual welding with coated electrodes and automatic arc welding. Compact tension CT50 specimen has been used. The three zones of welded joint; filler metal FM, heat affected zone HAZ and base metal BM have been investigated. The results show that the crack growth rate CGR is decreasing respectively in BM, FM and HAZ; however, this variation decreases when stress intensity factor SIF increases. For low values of SIF, the CGR is inferior in the over-matched filler metal of which the value of mismatch M is near unity, but for high values of M the CGR is superior, and the effect of the over-matching on CGR becomes negative. No deviation of the crack growth path has been noticed.

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

A Study on Rotary Bending Fatigue Strength of the $CO_2$ Gas Welded Joint in Air and Sea Water ([$CO_2$] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구)

  • S.W. Kang;S.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-126
    • /
    • 2000
  • TMCP steel has been widely used to construct ships and offshore structures. When it comes to ship and offshore structures, corrosion fatigue damages caused by sea water and fatigue occurred by wave-induced forces usually go on occurring simultaneously. So the fatigue life in corrosion environment is decreased markedly in comparison with that in air. The fatigue crack in corrosion easily initiates on welded joints of structure like as the fatigue crack in air. Therefore it is very important to study the fatigue properties of those of their welded joints as well as steel plates. In this study, rotary bending fatigue tests have been performed to investigate fatigue crack initiation and behavior of fatigue crack growth on CO2 gas weld HAZ of TMCP steel. The fatigue test used the specimens with various stress concentration factors in air and 3% NaCl solution

  • PDF

Effects of Different Shielding Gases in Laser Welding of Secondary Ni battery with Multi-thin Plates (이차전지용 니켈 다층 박판의 레이저 용접 보호가스의 영향)

  • You, Young-Tae;Lee, Ka-Ram;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • The demand for the eco-friendly vehicles is skyrocketing because of the increasing $CO_2$ emissions and global warming. In the industrial field, the battery process, a core part of an eco-friendly vehicle, is drawing increased attention; its weight lightening as well as high energy density are becoming increasingly important. In this study, pure Ni plates that were used as the battery pole plate were welded using the laser. The lab joint welding was conducted on ten pure Ni plates at a laser power of 1900 W and a feed speed of 2.8-3.4 m/min. As observed in the experiment, a faster feed speed reduced the bead width, but the laser did not penetrate all ten specimen plates. In addition, pores were trapped when protective gas was used, but they were not trapped when the welding was conducted in atmospheric condition.

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

The Porosity Control Technology of Lap Joint Welding Using Continuous Wave Nd:YAG Laser of the Low Carbon Steel SS41 (저탄소강 SS41 연속파형 Nd:YAG 레이저 겹치기 용접의 기공제어 기술)

  • Lee, Ka Ram;Hwang, Chan Youn;Yang, Yun Seok;Park, Eun Kyeong;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.665-672
    • /
    • 2013
  • With the development of advanced processing technology, laser processing systems, which require high-quality precision processing, have attracted considerable attention. Although laser equipment is expensive, it enables quick processing and less deformation of materials. This technology is often applied to secondary batteries, which has thus farinvolved the use of argon tungsten inert gas (TIG) welding. However, the welding characteristics of argon TIG welding are not yet good, and a laser is used for welding to address this problem. In this study, lap-joint welding was conducted, and the desired welding characteristics were obtained when the laser power was 1800W and the laser beam travel speed was 1.8 m/min. Lap-joint welding was conducted on Ni-coated SS41. Two cases were compared. No pores were observed in the Ni-coated SS41 lap-joint welding part, and cracks appeared from the lap-joints. Moreover, the pole rod and tap were welded together in a T-joint form to improve the output of the secondary battery. T-joint laser welding showed better welding characteristics than TIG welding.

STUDY ON HIGH SPEED WELDING IN GTA WELDING PROCESS

  • Cui Li;Jeong, Ho-Shin;Park, Byung-Il;Kim, Sung-Kab
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.89-93
    • /
    • 2002
  • A study of noticeable improvement in welding speed in thin-plate Type 304 stainless steels gas tungsten arc (GTA) welding was investigated. The welding speeds were increased to more than 3m/min, up to 8m/min. During the welding, Direct Current Straight Polarity (DCSP) and pulsed current GTA welding processes were carried out, respectively. The appropriate high speed welding parameters were established while achieving a high quality weld. After this, Erichsen test and tensile test were performed. The results obtained wert summarized as following: ultra high speed welding for thin-plate Type 304 could be satisfactorily welded with high speed from 3m/min to 8m/min in both DCSP and pulsed GTA welding; Increasing welding speed was found to decrease the ductility, tensile strength md elongation of welded joint; The optimal frequency would be 200Hz-500Hz for high speed welding in pulsed current welding; DCSP welding could obtain the better results of Erichsen test and tensile test than those of pulsed current welding obtained.

  • PDF

The Waveform Control and Blowhole Generation in the Wave Pulse MIG Welding for Galvanized Steel Sheets (아연도금강판에 대한 중첩펄스 MIG 용접에서의 파형제어와 기공 발생 특성)

  • Cho Sang-Myung;Kim Ki-Jung;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • Recently, application of arc welding to galvanized carbon steel sheet is on the increasing Ould in the fields of automobile and construction industries. In arc welding process, zinc is evaporated in weld pool, even under the appropriate welding condition and produce blowhole and/or pit. Zinc gas cause instability of arc and increase spatter and fume. This research is purposed to minimize the heat-input and the formation of porosities in the welded joint of the galvanized carbon steel sheet using variable polarity AC wave pulse MIG welding system. An appropriate welding condition which showed low spatter and good bead appearance was acquired by applying the AC pulse MIG welding machine to DC duplicated MIG welding with the solid wire. When oxygen gas was added to shield gas of MIG welding for galvanized steel sheet, arc length was increased and arc stability was improved. In the AC duplicated welding, the loss of galvanized layer was decreased as the amount of heat-input was decreased when the EN ratio was increased under the condition that average welding current was evenly set.