• Title/Summary/Keyword: Gas turbine model

Search Result 322, Processing Time 0.024 seconds

The Effect of the Integration Methods of Gas Turbine and Air Separation Unit on IGCC Plant Performance (가스터빈과 산소분리공정의 연계 방법에 따른 IGCC 플랜트 성능영향 분석)

  • 서석빈;김종진;조상기;이윤경;안달홍
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.533-539
    • /
    • 1999
  • Integration methods of a Gas Turbine and a Air Separation Unit have a potential to improve plant performance and cost of IFCC. Several studies on those integrations schemes were carried out. Then some of the methods were accually in commercial plants. Thus paper reviewed the integration schemes of a Gas Turbine and a Air Separation Unit. In order to compare the plant performance of IGCC with each scheme, simulation model was developed for IGCC power cycle with Texaco Quench gasification process. The simulation results showed that the thermal efficiency of the plant was appeared to be the best when all of the air consumption required for Air Separation Unit was supplied from the Gas Turbine and the net plant power output was maximized when 75% of the total ASU an requirement was supplied from Gas Turbine.

  • PDF

Large Eddy Simulation for the Analysis of Practical Combustion Field (실용 연소장 해석을 위한 대 와동 모사)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

Modeling of gas turbine control system (가스터빈 제어시스템의 모델링)

  • 이원규
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.26-30
    • /
    • 2000
  • In this paper, we obtain a mathematical model of a gas turbine control system from experimental data. The gas turbine in Gunsan power plant is selected as controlled system. The recursive least square algorithm is used to model the plant. For parameter estimation, plant is assumed as second order system and forgetting factor is 0.98 and the period of input and output signal period is 1sec. As a result, input and output characteristics of real system and modeling are identified.

  • PDF

Code Development for Online Assessment of Combustion Stability Margin by Utilizing Damping Ratios of Dynamic Pressure Data (동압 데이터의 감쇠계수를 활용한 연소 안정마진 실시간 평가 코드 개발)

  • Song, Won Joon;Ahn, Kwangho;Park, Seik;Kim, Sungchul;Cha, Dong Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.117-119
    • /
    • 2013
  • Combustion stability margin of a model gas turbine has been assessed by utilizing damping ratios of measured dynamic pressure data. It is known that acoustic oscillations in combustion chambers can be described as a superposition of nonlinearly interacting oscillators. Based on this theoretical background, CSMA (Combustion Stability Margin Assessment) code has been developed. The code has been employed into a model gas turbine combustion experiment, focused on the combustion instability, to show its capability to determine the damping ratio of measured dynamic pressure and further to assess combustion stability margin of the experiment, and turned out that the code works well.

  • PDF

Development of CODOG Propulsion System Simulator (CODOG 함정 추진체계 시뮬레이터 개발)

  • Jang, Jae-hee;Shin, Seung-woo;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1808-1817
    • /
    • 2017
  • Duties required for naval ship such as anti-submarine, anti-ship, and supply, etc are diversified, so the ECS (Enfineering Control System) is required for executing the mission effectively. The ECS monitors and controls the propulsion system in order that naval ship can perform the mission. As the in-country development of ECS is progressed, a test system for ECS is needed, and a naval ship propulsion system simulator based on CODOG was developed on this study. The naval ship propulsion system simulator based on CODOG which is divided into gas turbine model, diesel engine model, reduction gear model and controllable pitch propeller model, simulates to feedback of control commands of ECS. As a result of the experiment, it is able to confirm speed, torque and power, etc. of the gas turbine, diesel engine and shaft according to ECS propulsion mode.

Acoustic Modeling in a Gas Turbine Combustor with Backflow Using a Network Aproach (역류형 가스터빈 연소기에서 네트워크 접근법을 이용한 음향장 모델링)

  • Son, Juchan;Hong, Sumin;Hwang, Jeongjae;Kim, Min Kuk;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • In this work, we have developed a 1D network model aimed at predicting eigenvalues for resonance frequency analysis in a lab-scale industrial gas turbine single nozzle combustion system. Modern industrial gas turbines generally adopt combustors with very complex geometry and flow path to meet various design requirements simultaneously. The current study has developed a network model for combustion systems with backflow at the same axial location. The modeling results of resonance frequencies and mode distributions for a given system using the network model were validated from comparisons with prediction results using a 3D Helmholtz solver.

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Combustion Instability Comprehension with Combustion Chamber Length in Dual Swirl Gas Turbine Model Combustor from Flame Behaviors (화염거동을 통한 이중선회 가스터빈 모델 연소기에서 연소실 길이에 따른 연소 불안정성 이해)

  • Jang, Munseok;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.233-235
    • /
    • 2015
  • This study is to investigate the combustion instability of the variation of combustion chamber length in dual swirl gas turbine model combustor. When equivalence ratio was fixed at 1.1, as the length of the combustion chamber increases the value of the frequency decreased in 7kW while the value of the frequency was constant in 4kW. The analysis of flame behaviors by high speed camera was conducted to identify such trend.

  • PDF

Combustion and Emission Characteristics of Model Gas Turbine Combustor (모형 가스터빈 연소기의 연소 및 배출물 특성)

  • 최병륜;김태한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.240-249
    • /
    • 1994
  • The basic experiments for designing the effective gas turbine combustor were performed. There are several factors that define the characteristics of gas turbine combustor. Among them, experiment was focused on swirl effects by three types of swirler with different swirl numbers(0.0, 0.38, and 0.62). Particularly, an interest was concentrated on primary zone where the flame characteristics of total combustor was dominated strongly and secondary zone where the remaining unburned gas was reacted again or cooling effect was done according to degree of swirl intensity. For this study, following measurements have been carried out, that is, time mean and fluctuating temperature, exhaust gas composition including NO concentration, and ion current. From this study, it was found that swirl intensity affects largely not only flame style but also emission formation, furthermore that it is important to select proper swirl intensity.

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF