• Title/Summary/Keyword: Gas sensitization

Search Result 19, Processing Time 0.01 seconds

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

Fabrication and Characteristics of High-performance Doped-$SnO_2$ Thin Films for Explosive Gas Sensor

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • Long term stability, sensitization in air, and gas sensing behaviors of tin oxide films were investigated with doping of antimony and palladium. The tin oxide films were prepared on a Corning glass by reactive rf sputtering method and tested for detection of hydrogen gas. Sb-doping improved a long-term stability in the base resistance of $SnO_2$ film sensor. A small amount of Pd doping caused the optimum sensor operating temperature to reduce and also enhanced the gas sensitivity, compared with the undoped $SnO_2$ film. Gas sensitivity depended largely on the film thickness. The important sensitization reactions for sensor operating were $(O_{2ads})+e^-\;{\rightarrow}\;2(O_{ads})^-$ on the surface of $SnO_2$ film at elevated temperature in air and a followed reaction of hydrogen atoms with $(O_{ads})^-$ ions.

  • PDF

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

Solution Nitriding and Its Effect on the Austenitic Stainless Steels (오스테나이트계 스테인리스강에 대한 질소 고용화 처리 및 그 효과)

  • Huh, J.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.337-345
    • /
    • 2000
  • As a case hardening process for stainless steels, nitriding is more preferred and widely used than carburizing which deterioates corrosion resistance severely. In order to add the nitrogen into the stainless steels, passive film on the surface must be removed effectively before nitriding. Conventional gas nitriding process is performed in the temperature range of 500 to $600^{\circ}C$ with $NH_3$ gas, which often leads to sensitization of stainless steels. In this study, we tried to activate passive film of austenitic stainless steels by heating at low pressure. ($900^{\circ}C$, $5{\times}10^{-2}$ Torr.) Nitriding was performed at the solution treatment temperature of $1100^{\circ}C$ with nitrogen molecules instead of $NH_3$ gas. An attainable nitrogen content in a case depends on the nitrogen gas pressure at constant nitriding temperature. A case depth is proportional to the square root of solution time, which suggests that inward diffusion of nitrogen follows the Fick's 2nd law. Surface nitrogen atoms are dissolved as interstitial solutes, or precipitated in the form of MN, $M_2N$ nitrides, which increase the case hardeness. Dissolved nitrogen in the case enhances the cavitation resistance of austenitic stainless steels dramatically.

  • PDF

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

A Technical Description on The Safety Aspects related To Gas Suppression Fire Protection System (가스계 소화시스템관련 안전기술)

  • 이창욱
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.21-29
    • /
    • 2002
  • With regard to the personnel safety and other safety when the gas suppressants are discharged into the area where occupants exist, the short term and long term effects to the health of people are discussed mainly with the Carbon dioxide agent and Halon Replacement agents system. To gain the benefits of CO2 extinguishing systems while minimizing risk to people serious attention must be given to personnel safety in the design, installation, and maintenance of CO2 systems. Training of personnel is essential. A major factor in the use of a clean agent fire suppressant in a normally occupied area is toxicity. While all halocarbon agents are tested for long-term health hazards, the primary endpoint is acute or short-term exposure, The primary acute toxicity effects of the halocarbon agents described here are anesthesia and cardiac sensitization. For inert gases, the primary physiological concern is reduced oxygen concentration.

  • PDF

Highly Selective and Sensitive Detection of Acetone by ZnWO4-WO3 Hetero-composite Spheres

  • Ki Beom Kim;Myung Sung Sohn;Seong-Young Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.237-241
    • /
    • 2024
  • ZnWO4-WO3 hetero-composite microspheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn and W cations, followed by heat treatment at 600℃. The gas-sensing characteristics of 5 at% of Zn-added WO3 (5Zn-WO3; ZnWO4-WO3 hetero-composite) microspheres to 1 ppm acetone, ethanol, 20 ppm hydrogen (H2), 5 ppm carbon monoxide (CO), 25 ppb toluene, and 5 ppm ammonia (NH3) were measured at 325-400℃ under 80% relative humidity (RH). The sensor using 5Zn-WO3 microspheres exhibited highly selective and sensitive gas-sensing properties to acetone at 375℃ even under high humidity conditions. These superior gas-sensing properties were attributed to the increased resistance (electronic sensitization) through n-n heterojunction formation between WO3 and ZnWO4 phases and the acidic property of WO3, which exhibited a low gas response to interfering ethanol gas. The superior acetone gas-sensing characteristics of the 5Zn-WO3 sensor can be utilized in breath acetone analyzers for rapid, real-time ketogenic diet monitoring.

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun;Zheng, Yifang;Mirzaei, Ali;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.741-750
    • /
    • 2016
  • Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.

Enhanced HCHO Sensing Performance of NiO-decorated In2O3 Nanorods (NiO가 장식된 In2O3 Nanorods의 HCHO 감지 특성 향상)

  • Zion Park;Younghun Kim;Youjune Jang;Yujin Kim;Soohyun Han;Jae Han Chung;Young-Seok Sim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.310-317
    • /
    • 2024
  • Formaldehyde (HCHO) is a major primary indoor air pollutant with various adverse effects on the human body, includingsuch as sick building syndrome, lung cancer, and nasal cancer. Therefore, gas sensors for effective HCHO detection detecting HCHO are crucial for maintaining a healthy indoor environments, and research is being conducted to develop high-performance sensors for this purpose. AnOne of the effective methods for enhancing the to enhance sensing properties is involves modifying the p-n heterojunction structure, which improves sensing through via electronic sensitization based on the expanded depletion region and chemical sensitization that dissociates specific gases. In this studyHerein, weWe fabricated NiO-decorated In2O3 NRs using an e-beam evaporator based on the glancing angle deposition technique by optimizing the NiO thickness (0, 1, 2, and 3 nm). When exposed to 50 ppm HCHO, NiO-decorated In2O3 NRs showed a 3.91%-fold enhancement in the gas response (Ra/Rg-1= 23.9) and a 41.47% faster response time (40.7 s) than-compared to bare In2O3 NRs with an extremely low theoretical detection limit of ≈approximately 9.3 ppb.