• Title/Summary/Keyword: Gas processing system

Search Result 313, Processing Time 0.031 seconds

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Data processing of sensor output for correction of pressure measurement value of an anesthesia ventilator (마취기용 인공호흡기의 압력 측정값의 보정을 위한 센서 출력의 데이터 처리)

  • 박영준;이종수;김영길
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1067-1070
    • /
    • 1999
  • Anesthesia gas to pour to patients affects the flow and volume as the pressure difference of an oxygen and an anesthesia gas. An anesthesia gas, being injurious and polluting an environment, must control the pressure of an oxygen gas because of being used by closing up tight. But a pressure sensor to use for measuring an oxygen gas appears other pressure as the characteristic and the error difference of elements to use for implementing an system. A medical machine such as an anesthesia ventilator must be accurate because of using for the person's body. So we intend to implement an system for a sensor pressure measurement not to be change regardless of an environment. This papers is the target that a sensor pressrue measurement to be changed in environment is equal to actual sensor pressure measurement. So an implemented system is using analog filter and digital filter to reduce a noise. And we are using auto-zeroing and calibration to correct a sensor pressure which is changed in environment. Through such a process we increase the accuracy and the confidence of an anesthesia ventilator by controlling the flow of an anesthesia gas.

  • PDF

AN ARTIFICIAL NEURAL NETWORK BASED SENSOR SYSTEMS FOR GAS LEAKAGE MONITORING

  • Ahn, Hyung-Il;Kim, Eung-Sik;Lee, June-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.282-288
    • /
    • 1997
  • The purpose of this paper is to predict the situation of leak in closed space using an Artificial Neural Network (ANN). The existing system can't monitor the whole He situations with on/off signals. Especially the first stage of data determines the leak spot and intensity is disregarded in gas accidents. To complement these faults, a new prototype of monitoring system is proposed. Ihe system is composed of'sensing systenL data acquisition system computer, and ANN implemented in software and is capable of identifying the leak spot and intensity in closed space. The concentration of gas is measured at the 4 different places. The network has 3 layers that are composed of 4 input Processing Element (PE),24 hidden PEs, md 4 output PEs. The ANN has optimum condition through several experiments and as a consequence the recognition rate of93.75% is achieved finally

  • PDF

A Study of the Comparison for Performance Advancement of Seam Tracking in Gas Metal Arc Welding (가스 메탈 아크 용접에서 추적성능 향상을 위한 성능 비교 연구)

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • There have been continuous efforts for automation of joint tracking system. This automation process is mainly used to do in root pass of gas metal arc welding in the field of heavy industry and shipbuilding etc. For automation, it is important using of vision sensor. Welding robot with vision sensor is used for weld seam tracking on welding fabrication. Recently, it is used to on post-weld inspection for weld quality evaluation. For real time seam tracking, it is very important role in vision process technique. Vision process is included in filtering and thinning, segmentation processing, feature extraction and recognition. In this paper, it has shown performance comparison results of seam tracking for real time root pass on gas metal arc welding. It can be concluded better segment splitting method than iterative averaging technique in the performance results of seam tracking.

Contact oxide etching using $CHF_3/CF_4$ ($CHF_3/CF_4$를 사용한 콘택 산화막 식각)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.774-779
    • /
    • 1995
  • Process optimization experiments based on the Taguchi method were performed in order to set up the optimal process conditions for the contact oxide etching process module which was built in order to be attached to the cluster system of multi-processing purpose. In order to compare with Taguchi method, the contact oxide etching process carried out with different process parameters(CHF$_{3}$/CF$_{4}$ gas flow rate, chamber pressure, RF power and magnetic field intensity). Optimal etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. In this paper, as a final analysis of experimental results the optimal etching characteristics were obtained at the process conditions of CHF3/CF4 gas flow rate = 72/8 sccm, chamber pressure = 50 mTorr, RF power = 500 watts, and magnetic field intensity = 90 gauss.

  • PDF

The characteristic of penetration on the 800Mpa class high-tensile steel using remote welding system by $CO_2$ laser ($CO_2$ 레이저 원격 용접시스템을 이용한 800Mpa급 고장력강의 용입특성)

  • Song, M.J.;Lee, Y.J.;Song, Y.C.;Jung, S.M.;Jung, B.H.;Lee, M.Y.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.17-20
    • /
    • 2006
  • In the remote welding system using $CO_2$ laser, laser beam is rapidly deflected by moving mirrors of scanner system and has focusable distance over 1000mm from workpiece. From such arrangement, various advantages and disadvantages arise. Remote welding is a highly efficient laser process. As the mirrors of the scanner system allow positioning speeds exceeding 700m/s, it becomes possible to reduce the welding cycle time. On the other hand, as there no the provision of shielding gas which is normally required for beam powers exceeding 3kW, may become difficult task. Therefore, In this study, the influence of the various penetration of back bead by the different laser welding speed on the weld seam formation without shielding gas was investigated.

  • PDF