• 제목/요약/키워드: Gas processing system

검색결과 313건 처리시간 0.03초

PEMFC에 사용되는 수소 생산 및 정화 기술 최적화 연구 (A study on the Optimization of Hydrogen Production and Purification System for PEMFC )

  • 고석균;이상용
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2023
  • A fuel handling process combined with a pressure swing adsorption system (PSA) was simulated to produce pure hydrogen with a purity greater than 99.97%. The simulation consists of two parts. The fuel processing part consisting of reformer and water-gas shift reaction was simulated with Aspen plus®, and the hydrogen purification part consisting of PSA was simulated with Aspen Adsorption®. In this study, the effect of reformer temperature and pressure on the total hydrogen production yield was investigated. Simulations were performed over a temperature range of 700 to 1,000℃ and a pressure range of 1 to 10 bar. The total hydrogen production yield increased with increasing temperature and decreasing pressure. The maximum hydrogen yield was less than 50% in the simulation and will be lower in the real process.

Applications to Thin Film Processing to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Hwang, Hee-Su;Ko, Myeong-Hee;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.696-696
    • /
    • 2013
  • Solid Oxide Fuel Cells (SOFCs) have been gaining academic/industrial attention due to the unique high efficiency and minimized pollution emission. SOFCs are an electrochemical system composed of dissimilar materials which operates at relatively high temperatures ranging from 800 to 1000oC. The cell performance is critically dependent on the inherent properties and integration processing of the constituents, a cathode, an electrolyte, an anode, and an interconnect in addition to the sealing materials. In particular, the gas transport, ion transport, and by-product removal also affect the cell performance, in terms of open cell voltages, and cell powers. In particular, the polarization of cathode materials is one of the main sources which affects the overall function in SOFCs. Up to now, there have been studies on the materials design and microstructure design of the component materials. The current work reports the effect of thin film processing on cathode polarization in solid oxide fuel cells. The polarization issues are discussed in terms of dc- and ac-based electrical characterizations. The potential of thin film processing to the applicability to SOFCs is discussed.

  • PDF

Control Indian meal moth Plodia interpunctella by gas treatment

  • Han, Gyung Deok;Kwon, Hyeok;Jin, Hyun Jung;Kum, Ho Jung;Kim, Bo Hwan;Kim, Wook
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.45-45
    • /
    • 2017
  • The Indian meal moth, Plodia interpunctella, is one of the most important pests of stored food in the food processing industry worldwide. To control the Indian meal moth, methyl bromide, phosphine, high carbon dioxide, sulfuryl fluoride and plant essential oil fumigation have been considered. However, these treatments have disadvantages. For example, depleting the ozone layer, showing resistance in insect, low control efficacy or need high cost for treatment. Chlorine dioxide ($ClO_2$) is strong disinfectant and insecticide. The gas caused a malfunction in enzymes. The oxidative stress induced by $ClO_2$ gas treatment damaged to a physiological system and all life stages of P. interpunctella. The gaseous $ClO_2$ is a convincing alternative to methyl bromide for controlling P. interpunctella. The gaseous $ClO_2$ was generated by a chlorine dioxide generator (PurgoFarm Co., Ltd., Hwasung, Korea). It generated highly pure $ClO_2$ gas and the gas blown out through a vent into a test chamber. Gas entry to the chamber was automatically controlled and monitored by a PortaSene II gas leak detector (Analytical Technology, Collegeville, PA, USA). The properly prepared eggs, larvae, pupae, and adults of P. interpunctella were used in this experiment. Data were analyzed using SAS 9.4. Percentage data were statistically analyzed after arcsine-root transformation. Analysis of variance was performed using general linear model, and means were separated by the least significant difference test at P < 0.05. Fumigation is an effective management technique for controlling all stages of P. interpunctella. We found that $ClO_2$ gas treatment directly effects on egg, larvae, pupae and adults of P. interpunctella. The gas treatment with proper concentration for over a day achieved 100 % mortality in all stages of P. interpunctella and short time treatment or low concentration gas treatment results showed that the egg hatchability, pupation rate, and adult emergency rate were lowered compare with untreated control. Also, abnormal pupae or adult rate were increased. Gaseous $ClO_2$ treatment induced insecticidal reactive oxygen species (ROS), and it resulted in fatal oxidative stress in P. interpunctella. Taken together, these results showed that exposure proper concentration and time of the gas control all stages of P. interpunctella by inducing fatal oxidative stress. Further studies will be required to apply the gas treatment under real-world condition and to understanding physiological reaction in P. interpunctella caused by oxidative stress.

  • PDF

딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리 (Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning)

  • 이동건;지승환;박본영
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Miniaturized Electronic Nose System Based on a Personal Digital Assistant

  • Kim, Yong-Shin;Yang, Yoon-Seok;Ha, Seung-Chul;Pyo, Hyeon-Bong;Choi, Auck-Choi
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.585-594
    • /
    • 2005
  • A small electronic nose (E-Nose) system has been developed using an 8-channel vapor detection array and personal digital assistant (PDA). The sensor array chip, integrated on a single microheater-embedded polyimide substrate, was made of carbon black-polymer composites with different kinds of polymers and plasticizers. We have successfully classified various volatile organic compounds such as methanol, ethanol, i-propanol, benzene, toluene, n-hexane, n-heptane, and c-hexane with the aid of the sensor array chip, and have evaluated the resolution factors among them, quantitatively. To achieve a PDA-based E-Nose system, we have also elaborated small sensor-interrogating circuits, simple vapor delivery components, and data acquisition and processing programs. As preliminary results show, the miniaturized E-Nose system has demonstrated the identification of essential oils extracted from mint, lavender, and eucalyptus plants.

  • PDF

Six-sigma 기법을 이용한 연료전지시스템 연료저리장치 최적화 (Optimization of Fuel Processing Unit of Fuel Cell System using Six-Sigma Technique)

  • 정경용;김선회
    • 디지털융복합연구
    • /
    • 제10권2호
    • /
    • pp.225-229
    • /
    • 2012
  • 소형발전용 연료전지 시스템에 있어 개질장치는 탄화수소계의 연료를 수소가 풍부한 가스로 개질하여 주는 장치이다. 개질장치는 시스템 전체의 안정성과 성능의 관점에서 중요한 핵심 지표를 가지게 되는데 개질기의 핵심평가지표 중 가장 중요한 것은 배출가스 중의 CO농도이다. 시스템의 효율, 성능 및 안정성을 위하여 CO농도를 5ppm 이하로 관리되어야 한다. 본 연구에서는 개질기의 배출가스 내의 CO농도에 영향을 미치는 핵심인자를 도출한다. 개질기의 운전 및 설계에 있어 six-sigma 기법 중의 실험계획법을 도입하여 CO 농도에 영향을 미치는 핵심인자들을 도출해내고 도출된 인자들의 개선을 통하여 최적화된 운전조건을 제시하였다. 연료전지용 개질기에 있어서 가장 중요한 CO의 농도를 제어하기 위하여 도출된 인자들은 MTS, LTS, Prox와 같은 각 개질기내의 온도제어 및 그에 관한 결과로서의 CO 농도에 대한 최적 운전조건을 도출하였다.

임상 의료장비 인터페이스를 이용한 검사실 전산화 구현 : I. ABGA(Arterial Blood Gas Analyser)를 중심으로 (Computerizing Clinical Laboratory with Clinical Devices Interface : I. With a focus on ABGA(Arterial Blood Gas Analyzer))

  • 김선칠;권덕문
    • 대한디지털의료영상학회논문지
    • /
    • 제8권1호
    • /
    • pp.21-26
    • /
    • 2006
  • Hospitals these days are trying to introduce the a practice has recently been generalized in the test or diagnosis process, where test results and images from different test labs are interlinked together. This process is identical to that of physical aspect in EMR process, which computerizes the paper results within the hospital. One of the prerequisites for the process of computerizing test results is the interface between clinical test devices in the test labs. However, due to the variety of prescription inputs, disparity of test result papers, complexity of job in test labs and diversify of interfaces among the different devices, interconnection with the hospital information system is a complicated job. A universal control of clinical test devices which have independent communication protocols has become possible by connecting them with an interface workstation. As for the patients, waiting time for test has been reduced, and, thanks to the synchronized result retrieval system, it has become possible to check the test results on the very day of the test. As a result, the length of hospitalization has been reduced, too. In terms of workflow, as the transfer of charts and transfer of result papers are separated, the embarrassing job of collecting result papers has disappeared. As patients' test appointment and the results processing can be made on-line, extra work for doctors have disappeared. And, thanks to the computerization of test results information management, the job of statistical processing has become convenient.

  • PDF

용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구 (A Study on Development of the Optimization Algorithms to Find the Seam Tracking)

  • 진병주;이종표;박민호;김도형;우치엔치엔;김일수;손준식
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

박판 딤플 성형을 위한 유한요소해석 및 성형성 평가 (Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

군집화 기법을 이용한 GIS 열화 패턴 연구 (A Study on Degradation Pattern of GIS Using Clustering Methode)

  • 이덕진
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.255-260
    • /
    • 2018
  • In recent years, increasing electricity use has led to considerable interest in green energy. In order to effectively supply, cut off, and operate an electric power system, many electric power facilities such as gas insulation switch (GIS), cable, and large substation facilities with higher densities are being developed to meet demand. However, because of the increased use of aging electric power facilities, safety problems are emerging. Electromagnetic wave and leakage current detection are mainly used as sensing methods to detect live-line partial discharges. Although electromagnetic sensors are excellent at providing an initial diagnosis and very reliable, it is difficult to precisely determine the fault point, while leakage current sensors require a connection to the ground line and are very vulnerable to line noise. The partial discharge characteristic in particular is accompanied by statistical irregularity, and it has been reported that proper statistical processing of data is very important. Therefore, in this paper, we present the results of analyzing ${\Phi}-q-n$ cluster distributions of partial discharge characteristics by using K-means clustering to develop an expert partial discharge diagnosis system generated in a GIS facility.