• Title/Summary/Keyword: Gas plasma

Search Result 2,299, Processing Time 0.029 seconds

Characteristic Analysis of ITO by Variation of Plasma Condition to Fabricate OLED of High Efficiency (고효율 OLED 제작을 위한 플라즈마 조건 변화에 따른 ITO 특성 분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • This paper aims to analyze the characteristics of ITO which are caused by variation of plasma condition to fabricate the OLED of high efficiency. We treated $N_2$ gas and $O_2$ gas plasma on the surface of the ITO by changing their RF plasma power into 100 W, 200 W, 400 W and by changing their 9as pressure into 12 mTorr, 120 mTorr. The work function of ITO that plasma treatment was done by using $N_2$ gas had value of $4.88{\sim}5.07\;eV$, and that by using $O_2$ gas, $4.85{\sim}4.97 eV$. The characteristics of the ITO were most efficient in the $N_2$ gas plasma with the RF power of 200W and gas pressure of 120 mTorr. The rms roughness of ITO surface is the value from AFM image. In this case, ITO obtained $25.2\;{\AA}$ and $30.5\;{\AA}$ in the $N_2$ and $O_2$ gas plasma respectively when it had the RF power of 200 W. But ITO that didn't have plasma treatment was $44.5{\AA}$. The variation of ITO transmittance was almost not discovered by the change of $N_2$ gas and $O_2$ gas pressure.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Gas Removal Characteristics of Air Clean System Applying a Magnetic Field (자계가 인가된 공기청정장치의 가스 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.921-925
    • /
    • 2007
  • Gas removal characteristics of an air clean system, consisted of a filter and a nonthermal discharge plasma reactor with a magnetic field, have been investigated with emphasis on the enhancing gas removal efficiency of the applied magnetic field. It is found that the magnetic field influenced significantly to the corona discharge characteristics, decreasing the corona onset voltage and increasing the corona current. As a result, the proposed air clean system with the magnetic field showed the higher removal efficiency of the gas (e.g., trimethlyamine) than that of without the magnetic field. This would be because the magnetic field applied to the discharge plasma reactor of the air clean system can elevate the corona characteristics, and activate the generation of ozone, thus the removal efficiency of the gas was concurrently enhanced. This reveals that the proposed air clean system with the magnetic field could be used as an effective means of removal an indoor pollutant gas.

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

A Study on Electric Characteristics of Plasma Electon Beam Produced by Cold Cathode. (냉음극을 이용한 plasma전자 beam의 전기적 입력특성 I)

  • 전춘생;박용관
    • 전기의세계
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 1978
  • It has been investigates that electric characteristics of plasma electron beam in N$_{2}$, H$_{2}$ and Ar gas jars under various gas pressures during electron beams are formed. The results are as follows: 1)Electron beam is formed in the region of positive resistance on the characteristic curve. This phenomenon is identical in N$_{2}$, H$_{2}$ and Ar gases. 2)But in Ar gas, electron beam is formed at relatively lower gas pressure than in H$_{2}$ and N$_{2}$. 3)In pure gas either N$_{2}$, H$_{2}$ and N$_{2}$ the lower the gas pressure, the higher the voltage drop for the same electron beam current. 4)The region in which electron beam is formed is limited at a given pressure. 5)Beyond the limit mentioned above, it becomes glow discharge state and the current increases radically. 6)At a given gas pressure, electron beam voltage, that is, electrical power input increases with gap length.

  • PDF

The Effect on Gas Adsoption Efficiency for Various Surface Characteristics (표면특성에 따른 물맺힘 특성이 가스흡착성에 미치는 영향)

  • 허경욱;신종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.671-675
    • /
    • 2002
  • The gas adsorption efficiency for various surfaces with three different characteristics has been reviewed. The dimethyl disulfide gas has been used to investigate characteristics of gas adsorption for different surface characteristics such as plasma treated, lacquer coated and untreated. Three different surfaces were evaluated in dry conditions initially and tested at wet surface conditions with spraying water to evaluate the gas adsorption efficiency which usually occurred at defrost cycles. The results show that the gas adsorption of the plasma treated sample has better performance than others. The lacquer coated and untreated samples showed the similar result, but the lacquer coated sample showed a slightly better performance.

Effects of Plasma Spray Conditions on Photoelectric Properties of Plasma Sprayed $TiO_2$ Semiconductor ($TiO_2$ 반도체 용사피막의 광전극 특성에 미치는 용사조건의 영향)

  • 박정식;박경채
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • In this study, plasma spraying has been used to produce $TiO_2$ polycrystalline coatings from $TiO_2$ powders. The physical and chemical properties of plasma sprayed $TiO_2$ coatings depend greatly on plasma spraying conditions. The electrical resistivity, oxygen concentration, photocurrent and crystal structure of plasma sprayed $TiO_2$ coating has been studied. The results are as follows: 1. The oxygen loss and electrical conductivity of $TiO_2$ plasma sprayed coatings increased by low pressure and high amount of auxiliary gas, hydrogen in plasma spraying. 2. Oxygen loss increase electrical conductivity, and decrease photocurrent of $TiO_2$ plasma sprayed coatings. 3. Photocurrent of $TiO_2$ plasma sprayed coatings manufactured in atmospheric pressure is higher than that of low pressure.

  • PDF

Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization

  • Lakshmanan Kumaresan;Gurusamy Shanmugavelayutham;Subramani Surendran;Uk Sim
    • Journal of the Korean Ceramic Society
    • /
    • v.59
    • /
    • pp.338-349
    • /
    • 2020
  • Large scale with high-purity hexagonal aluminum nitride nanoparticles (AlN NPs) was synthesized using DC thermal plasma arc discharge method (TPAD). Argon gas was used as the plasma forming gas, while ammonia (NH3) gas was used as the reactive gas, which was fed into the reactor at a constant flow rate of 5 LPM. In order to optimize the process for high yield, the experiments were carried out at various plasma input powers, such as 1.5, 3.0, and 4.5 kW. Following the optimization, to examine the influence of using pure nitrogen gas, an experiment was also carried out in the nitrogen ambience. The phase identification and structural determination of the synthesized NPs were carried out using XRD and Raman spectroscopic analyses. While the morphology, particle size, and elemental compositions of the synthesized NPs were observed from SEM, HRTEM, XPS, and EDX analyses. The photoluminescence response was confirmed from the PL spectrum. The PL emission peaks observed around 440 nm (2.8 eV) and 601 nm (2.07 eV), respectively, which correspond to the UV blue and red band emissions of both AlN and Al/AlN NPs. The results show that the synthesized nano-AlN NPs exhibit excellent crystallinity with a high yield of approximately 210 g/h. The current plasma technology can be regarded as a perfect potential process for developing nano-AlN powders with improved efficiency.

The Effects of Gas Compositions During Post Nitriding on the AISI 316L Stainless Steel after Plasma Carburizing

  • Lee, Insup
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.269-274
    • /
    • 2015
  • In this experiment, post-nitriding treatment was performed at $400^{\circ}C$ on AISI 316 stainless steel which was plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% $N_2$, 50% $N_2$ and 75% $N_2$) for 4 hours. Additionally, during post nitriding Ar gas was used with $H_2$ and $N_2$ to observe the improvement of surface properties. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduced the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% $N_2$ gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment degraded the corrosion resistance of the sample compared with the carburized sample.

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.