• Title/Summary/Keyword: Gas nozzle

Search Result 798, Processing Time 0.042 seconds

Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects (실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.

Investigation of the Exhaust gas on the Intake Manifold using Nozzle (노즐을 적용한 흡기 매니폴드의 배출가스 고찰)

  • Kim, Man-Jea;Kim, Tae-Jung;Choi, Byung-Ky
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.253-257
    • /
    • 2018
  • Exhaust gas from the combustion of automobiles adversely affects the human body and even pollutes the atmosphere. This study investigated the influence of exhaust gas change on intake manifold using the nozzle. First, the flow analysis was performed using the 3D flow analysis program. When the nozzle inlet air velocity increased, the average air velocity in the nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$ increased 37.3% and 31.9% respectively at the intake manifold outlet. As the nozzle inlet air velocity increased, the maximum flow rate of air increased to 42.2% and 32.6%, respectively at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$. In order to verify the analysis results, experiments on the exhaust gas were performed in the engine simulation system. As the nozzle inlet velocity increased, HC values decreased by 42.4% and 31.4% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$, respectively. And CO values decreased by 40.7% and 31.1% at nozzle diameters of ${\Phi}2.5$ and ${\Phi}5$.

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

Numerical and experimental investigation of non-stationary processes in the supersonic gas ejector

  • Tsipenko, Anton;Kartovitskiy, Lev;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.469-473
    • /
    • 2009
  • The supersonic gas ejector, as gas dynamic appliance, has been applied for a long time because of simplicity and reliability. However, for the prediction of ejector performances with given parameters, that is, working gas pressure and the nozzle shape, it is necessary to raise accuracy of modelling for properties of ejector gas flow. The purpose of the represented work is to compare one-dimensional modelling and numerical results with experimental results. The ejector with a conic nozzle has been designed and tested (Mach number at the nozzle exit section was 3.31, the nozzle throat diameter - 6 mm). Working gas - nitrogen, was brought from system of gas bottles. Diameter of the mixture chamber at the nozzle exit section was limited by condensation temperature of nitrogen and equaled 20 mm. The one-dimensional theory predicted the minimal starting pressure equaled 8.18 bar (absolute) and 0.051 bar in the vacuum chamber. Accordingly the minimal starting pressure was 9.055 bar and 0.057 in the vacuum chamber bar have been fixed in experiment.

  • PDF

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Control of Bead Geometry and Effect of Protection against Wind according to the CDP Gas Nozzle in Arc Welding (Arc용접에서 CDP Gas Nozzle에 의한 비드형상제어 및 방풍효과)

  • Seo, Ji-Seok;Ham, Hyo-Sik;Im, Sung-Bin;Ha, Jong-Moon;Son, Chang-Hee;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.25-25
    • /
    • 2009
  • 종래의 위보기 자세에서 용접은 중력이 모재의 표면으로 향하고 있어 용융금속이 중력에 의해 표면방향으로 흘러내리게 되어 용접 실시가 불가능하였다. 이에 Shield Gas Force, Trailing Gas Force 그리고 Ahead Gas Force를 적절히 적용하여 Position Welding에서 중력으로 인해 Molten Metal이 처지는 문제를 극복하여 생산성 향상으로 연결할 수 있음을 선행 실험을 통해 확인하였으나 기존의 C(Convergent)형, CP(Convergent Divergent)형 및 P(Parrallel)형 가스 노즐은 용접조건에 따라 실드 가스의 소모량이 많고, 토출되는 실드가스력이 부족하여 용접시 볼록한 이면 비드 형성을 위한 용융 풀을 효과적으로 제어 할 수 없다. 따라서 본 연구에서는 동일량의 실드 가스 공급시 가스 노즐을 통해 토출되는 실드가스의 소모를 줄이고 실드가스력을 극대화하여 저가의 고생산성을 가진 친 환경 용접기술(Green welding)에 부합하는 CDP(Convergent Divergent Parrallel)형 가스 노즐을 제작하여 기존의 CP형 가스 노즐과 비교 분석하였다. 또한 Overhead Position에서의 비드형상제어와 Flat Position에서 방풍효과를 비교해 보았다. 그 결과 CDP Nozzle은 CP Nozzle보다 동일한 유량에서 풍속은 3.5배, 냉각능력은 1.5배, 가스압력은 6.25배로 우수한 성능을 확인할 수 있었고, Overhead Position에서 가스 유량을 동일하게 하여 용접하였을 때 CP Nozzle의 경우 오목한 이면비드가 나타났지만 CDP Nozzle의 경우 볼록하게 양호한 이면비드 형상이 나타났고, Flat Position에서의 방풍효과 비교실험에서 CDP Nozzle에서는 깊고 균일한 용입을 CP Nozzle에서는 불안정한 용입이 나타났는데 이는 CDP Nozzle의 경우 풍속에 의한 Arc Blow가 적게 발생하여 상대적으로 더 나은 용입을 확인하였다.

  • PDF

Improvement of Gas Dissolution Rate using Air Atomizing Nozzle (이류체 노즐을 이용한 가스의 용존율 향상)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • This study was conducted to investigate the possibility of utilizing various types of nozzles and gas-liquid mixers to increase the dissolution rate of plasma gas containing ozone generated in a dielectric barrier plasma reactor. After selecting the air atomizing nozzle with the highest gas dissolution rate among the 13 types of test equipment, we investigated the influence of the operating factors on the air atomizing nozzle to determine the optimal plasma gas dissolution method. The gas dissolution rate was measured by a simple and indirect method, specifically, the measurement of KLa instead of direct measurement of ozone concentration, which requires a longer analysis time. The results showed that the KLa value of the simple mix of air and water was $0.372min^{-1}$, Which is 1.44 times higher than that ($0.258min^{-1}$) of gas emitted from a normal diffuser. Among the nozzles of the same type, the KLa value was highest for the nozzle having the smallest orifice diameter. Among the 13 types of devices tested, the nozzle with highest KLa value was the M22M nozzle, which is a gas-liquid spray nozzle. The relationship between water circulation flow rate and KLa value in the experimental range was linear. The air supply flow rate and KLa value showed a parabolic-type correlation, while the optimum air supply flow rate for the water circulation flow rate of 1.8 L / min is 1.38 times.