• Title/Summary/Keyword: Gas nitrocarburizing

검색결과 16건 처리시간 0.031초

가스 침질탄화처리한 SM3SG강의 기계적 성질에 미치는 고주파퀜칭의 영향 (Effect of Induction Hardening on Mechanical Properties in Gas Nitrocarburized SM35C Steel)

  • 김학신;이규복;유정희;김형태;장환용
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.224-230
    • /
    • 2000
  • Garbon steel(SM35C) was gas nitrocarburized at $580^{\circ}C$ in $55%N_2-40%NH_3-5%CO_2$ mixed gas atmosphere, and then the steel was induction hardened at $850^{\circ}C$. The microstructure of gas nitrocarburized surface layer was observed by optical microscope and SEM. The phase analysis was carried out by X-ray diffraction method. The mechanical properties of gas nitrocarburized SM35C steel was evaluated by hardness, wear and fatigue test. The thickness of compound and diffusion layer were increased with increasing the gas nitrocarburizing time and the densest compound layer was obtained at 3 hours gas nitrocarburizing time. In case of 15sec induction hardening after gas nitrocarburizing, the surface hardness was decreased from 800Hv to 630Hv owing to the decomposition of compound layer, but wear resistance was increased because of increased hardness of diffusion layer. The fatigue strength of induction hardened steel after gas nitrocarburizing, $58kgf/mm^2$, was higher than $41.5kg/mm^2$ of gas nitrocarburized steel and $45kg/mm^2$ of induction hardened steel, respectively.

  • PDF

스팀처리된 소결강의 플리즈마 질화 및 연질화 특성 (Characteristics of Plasma Nitriding and Nitrocarburizing of Steam Treated Sintered Steels)

  • 박주승
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.268-274
    • /
    • 1997
  • Characteristics of plasma nitriding and nitrocarburizing for steam treated sintered steels were studied. Fe-0.8%C powder containing Ni, Cu were sintered at 112$0^{\circ}C$ and steamed at 52$0^{\circ}C$. Temperature of plasma nitriding and nitrocarburizing was varied from 50$0^{\circ}C$ to $600^{\circ}C$. Gas mixture of nitriding was set at $N_2$ : $H_2$ =80:20 (vol.%), but $CH_4gas$ was added 1~2 vol.% for nitrocarburizing. Steam treatment for sintered steels brought not only the formation of oxide layer but also decarburizing near the surface. Decrease in hardness near the surface resulted from the formation of ferrite due to decarburizing. Thus, the low hardness was recovered not with plasma nitriding but with plasma nitrocarburixing. Wear resistance properties of steamed specimens and ni-trocarburized specimens were better than those of nitrided specimens according to the pin-on-disk wear test. On the other hand, the fatigue life of steamed specimen was shorter than that of nitrocaiburized specimen.

  • PDF

AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향 (Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

복합열처리된 열간 가공용 금형공구강의 기계적 성질 및 열처리특성에 관한 연구 (Study on the Heat Treatment Characteristics and Mechanical Properties of Hot Work Tool Steel by Using Combined Heat Treating)

  • 백성돈;노용식;최문성;최진원;이상윤
    • 열처리공학회지
    • /
    • 제2권4호
    • /
    • pp.27-39
    • /
    • 1989
  • The effect of gas mixing ratios during gas nitrocarburizing treatment on the formation of compound layer and the mechanical properties has been studied for hot work tool steel by using a combined heat treating technique. The thickness of compound and diffusion layers has been shown to grow as a parabolic relation with increasing the amount of ammonia at a given flow quantity of $CO_2$ gas. The compound layer consists mainly of ${\varepsilon}-Fe_3$(C, N) with small amounts of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}$-Fe. The combined heat treated hot work tool steel has shown that the thickness of compound layer increases with increasing nitrocarburizing time, but the rate of growth slows down as gas nitrocarburizing time goes more than two hours. Tensile properties have given a remarkable improvement. In particular, the wear resistance of combined heat treated hot work tool steel has exhibited an improvement of about 165% greater than that obtained from conventional quenching and multi-tempering treatments.

  • PDF

저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향 (Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel)

  • 이인섭;이천호
    • 한국표면공학회지
    • /
    • 제53권2호
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.

가스침질탄화법(浸窒炭化法)에 관한 연구(硏究) (Study on Gaseous Nitrocarburizing Treatment)

  • 이상윤
    • 열처리공학회지
    • /
    • 제1권1호
    • /
    • pp.8-12
    • /
    • 1988
  • This study has been carried out to evaluate gaseous nitrocarburizing treatment undertaken for pure iron at $570^{\circ}C$ in an atmosphere containing 50% endothermic gas, generated from natural gas, and 50% ammonia. The results obtained from the experiment are as follows ; 1) The microstructure of gaseous nitrocarburized pure iron consists of the compound layer on the surface and the diffusion zone beneath it. The compound layer progresses uniformly into ferrite with a thickness of $20{\mu}$ obtained after treating for 3 hours. 2) Chemical analysis has shown that the compound layer has a C/N ratio of 0.19 and that the average combined interstitial content of the compound layer is about 30 atomic percent, which is close to the lower limit of the ${\varepsilon}$-carbonitride phase field in Fe-C-N phase diagram. 3) X-ray diffraction analysis has revealed that the compound layer consists mainly of the c.p.h. phase, ${\varepsilon}-Fe_3$(C.N) and a small amount of $Fe_4N$ and traces of ferrite are also present in the compound layer. 4) The microhardness of the compound layer is about 600 V.H.N and shows a relatively sharp fall-off at the compound layer/diffusion zome interface. 5) The average actual degree of ammonia dissociation is calculated to be 27% for a gaseous nitrocarburizing treatment carried out at $570^{\circ}C$.

  • PDF

저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구 (A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres)

  • 신평우;이구현;남기석;박율민;조형준
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

플라즈마 질탄화처리된 SCM435강의 미세조직에 미치는 가스 조성의 영향 (Influence of Ambient Gas Composition on the Microstructure of Plasma Nitrocarburised SCM435 steel)

  • 이인섭
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.427-430
    • /
    • 2002
  • Plasma nitrocarburizing treatment was performed for SCM 435 steel by using a plasma ion nitriding system. The effects of the variation of nitrogen and methan contents upon the hardened layer was investigated. Both the thickness of the compound layer and the amount of $\varepsilon$ phase in the compound layer increased with increasing nitrogen content. However, the thickness of the compound layer decreased due to unstable plasma for an atmosphere containing 90% $N_2$ gas content in the gas mixture. The amount of $\varepsilon$phase in the compound layer increased with increasing $CH_4$ gas content. For $CH_4$ gas content more than 2% in the gas mixture, the thickness of the compound layer decreased due to the formation of $\theta$ phase.

가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향 (Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels)

  • 김영희;김석동;윤희재
    • 열처리공학회지
    • /
    • 제15권5호
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.