• Title/Summary/Keyword: Gas nitride

검색결과 312건 처리시간 0.025초

GPS와 HP법으로 제조된 질화규소의 고온 Erosion 특성 (High Temperature Erosion Properties of Silicon Nitride Fabricated by GPS and HP Method)

  • 최현주;안정욱;임대순;박동수
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.304-309
    • /
    • 2000
  • Si$_3$N$_4$-6wt%Y$_2$O$_3$-lwt%Al$_2$O$_3$was prepared by hot pressed and gas pressure sintering to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the high temperature erosion properties. A gas blast type erosion tester was used In examine erosion behavior of the specimens up to 700$^{\circ}C$. In case of GPS silicon nitride, the erosion rate increases up to 500$^{\circ}C$ and decreases over 500$^{\circ}C$. Maximum erosion rate was observed at 300$^{\circ}C$ for HP silicon nitride. The principal factors affecting the high temperature erosive wear of brittle materials are largely dependent on high temperature properties of grain boundaries.

  • PDF

마그네트론 스퍼터에 의한 Carbon Nitride 박막의 합성 및 특성에 관한 연구 (A Study on the Synthesis and Characterization of Carbon Nitride Thin Films by Magnetron Sputter)

  • 박구범
    • 전기학회논문지P
    • /
    • 제52권3호
    • /
    • pp.107-112
    • /
    • 2003
  • Amorphous carbon nitride thin films have been deposited on silicon (100) by reactive magnetron sputtering method. The basic depositon parameters varied were the r.f. power(up to 250 W), the deposition pressure in the reactor(up to 100 mtorr) and Ar:$N_2$ gas ratio. FT-IR and X-ray photoelectron spectra showed the presence of different carbon-nitrogen bonds in the films. The surface topography of the films was studied by scanning electron microscopy(SEM) and atomic force microscopy(AFM).

X-ray 마스크용 $WN_x$ 박막 증착에 관한 연구(l) (A Study on Deposition of Tungsten Nitride Thin Film for X-ray mask(l))

  • 장철민;최병호
    • 한국재료학회지
    • /
    • 제8권2호
    • /
    • pp.147-153
    • /
    • 1998
  • $WN_x$ 는 리소그라피 마스크의 흡수체나 VLSI 기술에서 금속연결의 확산방지재로써 주목을 받고 있다. RF마르네트론 스퍼터링법으로 여러 증착변수에서 제조한 $WN_x$ 막을 고찰하였다. $SiN_x$ 멤브레인 위에 증착된 박막의 결정구조는 질소아르곤 가스유량비(0-30%), 가스압력(10-43mTorr), RF출력(0150W)및 기판과 타겟사이의 거리 6cm에서 증착한 $WN_x$ 박막은 비정질이였으며 다른 조건에서는 표면이 거친 다결정질이었다. 비정질 박막은 rms가 $3.1\AA$으로 아주 매끈하여 X-선 마스크용 흡착제로써 적합할 것으로 기대된다.

  • PDF

마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향- (The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter-)

  • 이재식;김한군;유용주
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결 (Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride)

  • 배강;우상국;한인섭;서두원
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

RF 유도결합 열 플라즈마를 이용한 암모니아와 질소분위기에서 고순도 AlN 나노 분말의 합성 (Synthesis of High Purity Aluminum Nitride Nanopowder in Ammonia and Nitrogen Atmosphere by RF Induction Thermal Plasma)

  • 김경인;최성철;김진호;황광택;한규성
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.201-207
    • /
    • 2014
  • High-purity aluminum nitride nanopowders were synthesized using an RF induction thermal plasma instrument. Ammonia and nitrogen gases were used as sheath gas to control the reactor atmosphere. Synthesized AlN nanopowders were characterized by XRD, SEM, TEM, EDS, BET, FTIR, and N-O analyses. It was possible to synthesize high-purity AlN nanoparticles through control of the ammonia gas flow rate. However, additional process parameters such as plasma power and reactor pressure had to be controlled for the production of high-purity AlN nanopowders using nitrogen gas.

유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성 (Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma)

  • 김경인;최성철;한규성;황광택;김진호
    • 한국결정성장학회지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2014
  • 질화알루미늄(AlN)은 뛰어난 열적, 전기절연성 특성을 갖고 있어 반도체 기판용 재료나 전자 패키징 재료로 주목받고 있다. 질화알루미늄은 소결온도가 높고 불순물로 인한 물성저하 때문에 고순도화 및 나노원료화가 필수적이다. 본 연구에서는 RF 유도결합 열플라즈마를 이용하여 알루미늄 분말로부터 고순도의 질화알루미늄 나노분말을 합성하였다. Sheath gas로 사용된 암모니아의 유량 제어를 통해 고순도의 질화알루미늄 나노분말이 합성되는 조건을 확립하고자 하였으며 합성된 분말은 XRD, SEM, TEM, BET, FTIR, N-O분석을 통해 특성분석을 진행하였다.

플라즈마질화시 방전가스중 질소가스의 비율이 공구강(SKH51)의 질화층 및 미소경도에 미치는 영향 (Effects of Nitrogen Gas Ratio on Nitride Layer and Microhardness of Tool Steel(SKH51) in Plasma Nitriding)

  • 김덕재;이해룡;곽종구;정우창;조영래
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.447-451
    • /
    • 2002
  • Pulsed DC-plasma nitriding has been applied to form nitride layer having only a diffusion layer. The discharge current with the variation of discharge gases is proportional to the intensity of $N_2^+$ peak in optical emission spectroscopy during the plasma nitriding. The discharge current, microhardness in surface of substrate and depth of nitride layer increased with the ratio of $N_2\;to\;H_2$ gas in discharge gases. When the ratio of $N_2\;to\;H_2$ is lower than 60% in the discharge gases, high microhardness value of 1100Hv nitride layer which contains no compound layer has been formed.

Diffusion barrier characteristics of molybdenum nitride films for ultra-large-scale-integrated Cu metallization(II); Effect of deposition conditions on diffusion barrier behavior of molybdenum nitride

  • Lee, Jeong-Joub;Lee, You-Kee;Jeon, Seok-Ryong;Kim, dong-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제1권1호
    • /
    • pp.30-37
    • /
    • 1997
  • Interactions of Cu films with Si substrates separated by thin layers of molybdenum and molybdenum nitride were investigated in the viewpoint of diffusion barrier to copper. the diffusion barrier behavior of the layers was studied as functions of deposition and annealing conditions by cross-sectional transmission electron microscopy and Nomarski microscopy. the layers deposited at $N_2$ gas ratios of 0.4 and 0.5 exhibited good diffusion barrier behaviors up to $700^{\circ}C$, mainly due to the phase transformation of molybdenum to $\gamma$-Mo$_2$N phase. The increase in the N gas ratio in deposition elevates the lower limit of barrier failure temperature. Futhermore, amorphous molybdenum nitride films deposited at 20$0^{\circ}C$ and 30$0^{\circ}C$ did not fail, while the crystalline $\gamma$-Mo$_2$N films deposited at 40$0^{\circ}C$ and 50$0^{\circ}C$ showed signs of interlayer interactions between Cu and Si after annealing at 75$0^{\circ}C$ for 30 minutes. Therefore, the amorphous nature of the molybdenum nitride layer enhanced its ability to reduce Cu diffusion and its stability as a diffusion barrier at elevated temperatures.