• Title/Summary/Keyword: Gas mixing

Search Result 1,054, Processing Time 0.031 seconds

Gas dischage Simulation for Color Plasma Display Panel and Measurement of VUV (Vacuum UltraViolet) (칼라 플라즈마 디스플레이 패널용 혼합 가스 최적화 시뮬레이션 및 진공 자외선 측정)

  • Park, Hun-Gun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1666-1668
    • /
    • 1997
  • This paper reports the optimal gas mixing ratio for color plasma display panel to improve luminous efficiency using gas dischage simulation which contains energy equation. We verified a simulation by measuring vacuum ultraviolet. The luminous efficiency has improved considerably(about 30%) by adding Ar (0.5%), compared with Ne-Xe(4%) mixing gas.

  • PDF

The Fuel Spray Structure of High Pressure Gasoline Injector in a Constant Volume Chamber (정적챔버내의 고압 가솔린 인젝터의 연료분무구조)

  • 귄의용;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.10-17
    • /
    • 2000
  • This work presents an investigation of aerodynamic characteristics of fuel spray injected from a high pressure hollow cone swirl injector into a constant volume chamber. Laser tomography visualization was used to interrogate the fuel and air mixing characteristics and the effect of chamber pressure and temperature increase was analyzed, Preliminary results on spray development showed that mixing effect tends to increase with the increase of injection pressure and chamber gas pressure yielding a decrease of spray penetration and an attenuation of well-defined vortex structure. Topological analysis of the spray structure has been performed to initiate the understanding of mixing and vaporization process. For the present experimental conditions fuel injection pressure and chamber gas pressure appear as the dominant factors which govern the transient mixing characteristics. Moreover spray atmixation characteristics are improved by increasing chamber gas temperature.

  • PDF

Experimental and Numerical Study on the Gas Mixing and Reaction in the Freeboard of a Fluidized Bed Incinerator for Sludge Treatment (슬러지 유동층 소각로의 프리보드 내 가스 혼합 및 반응 특성에 대한 실험 및 해석적 연구)

  • Kim, Young-Min;Shin, Dong-Hoon;Hwang, Seung-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • The present study investigates the combustion phenomena in a sludge incinerator using experimental and numerical method. The temperature and gas concentration were measured at 33 points during operation of the incinerator in order to assess the mixing and combustion characteristics. Numerical simulation was also carried out using a commercial CFD code. Simplified inlet conditions were introduced in oder to predict the bulk solid combustion and the diffusion of the volatile matter released by pyrolysis of sludge. The experimental results showed that the combustion process is extremely inhomogeneous. Large variations were observed in the temperature and gas concentrations in the freeboard of the incinerator due to poor mixing performance between the air and the combustibles, which is caused by massive and bulk generation of volatile matter by fast pyrolysis of sludge particles. The boundary condition of the CFD simulation was found effective in predicting the poor mixing and combustion performance of the reactor.

Effect of Nitrogen Volume in Ar-N2 Shielding Gas on Microstructure and Hardness of GTA Welded Pure Ti (순 Ti GTA 용접부의 미세조직과 경도에 미치는 Ar-N2 보호가스 중 질소량의 영향)

  • An, Hyun-Jun;Jeon, Ae-Jeong;Hong, Jae-Keun;Jeong, Bo-Young;Lee, Jong-Sub;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.70-75
    • /
    • 2012
  • In this study, effect of nitrogen volume in the shielding gas of Ar-$N_2$ mixing gas on the bead shape, hardness and microstructure of GTA welds of 3mm thick Commercial Pure Ti was investigated. As the nitrogen volume increased, the welding current for full penetration was reduced and hardness in the fusion zone significantly increased compared with that of the base metal, but there is no difference in the hardness of HAZ. Microstructure in the fusion zone with pure Ar gas changed from equiaxed alpha of the base metal to serrated alpha. On the other hand, microstructure using Ar-$N_2$ mixing gas changed to acicular alpha. With the increasing of nitrogen content, the amount of acicular alpha increased and the size of that was fine.

A Study on Concentration Detection Technology of Air Mixing Gas according to Temperature Variation for Refrigerator Foam System (온도변화에 따른 냉장고 발포시스템용 에어믹싱가스 농도검출기술에 관한 연구)

  • Koo, Yeong-Mok;Yang, Jun-Suk;Jo, Sang-Young;Kim, Min-Seong;Noh, Chun-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • This study proposes the temperature compensation algorithm using thermopile detector for non-dispersive infrared Nitrogen gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module characteristics of narrow bandpass filter, optical cavity and infrared lamp, and air mixing gas have been introduced in order to implement the temperature compensation algorithm.

A Study on the Combustion and Explosion Characteristics According to Mixing Ratio of Gas (가연성 가스의 혼합비에 따른 연소 및 폭발특성에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.50-56
    • /
    • 2005
  • Liquefied Petroleum 6aso-PG) is combustible gas which used for fuel for domestic and automobiles. A research for adjust a component of LPG to improve the fuel characteristics and control the manufacturing process of that is carrying in petrochemical industry. Some kinds of LPG blending is considered as a adjusting method to control component of LPG. LPG is mainly propane for domestic use and butane for automobile use but propylene and butylene also a kind of LPG Change of explosion characteristic and combustion gas component by mixing of propylene in propane and butane was measured and analysed in this research. Based on the result of experiment, it was found that explosion pressure and pressure rise rate was slightly increased with mixing rate of propylene and it was considered the possibility of increasing the CO concentration in combustion gas with increase the mixing rate of propylene.

  • PDF

A Study of Gas Interchangeability on Natural Gas and LPG/Air Mixture (천연가스와 LPG/Air 혼합시 가스 호환성 연구)

  • 한정옥;유현석;방효선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.126-138
    • /
    • 1995
  • In order to study the gas interchangeability, a series of tests and analysis were conducted regarding to natural gas and gas mixture. Natural gas was selected as a reference and NG-LPG/Air mixture as a substitute gas. The major interest was placed on the determination of interchangeability limits for different mixing conditions. The parameters of Wobbe Index and Combustion Potential were employed in estimating the gas interchangeability, The limits obtained by analysis(AGA, WEAVER, KNOY, GILB) were compared with experimental results. The results estimated showed that the mixing limits of LPG/Air in proper conditions were found to vary with analysis and AGA is considered to be the most appropriate one.

  • PDF

An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Lee, Jong-Guen;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

A Numerical Study on Gas Mixing Time in a Low-Pressure (Driven) Section of a Shock Tube (충격파관 저압실내 가스 혼합시간 예측에 관한 수치해석)

  • Wang, YuanGang;Cho, Cheon Hyeon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • The fuel and oxidizer mixing process in the shock tube driven section is simulated numerically. The boundary condition is set based on an shock tube experimental condition. The objective is to predict the gas mixing time for experiments. In the experiment, the amount of fuel to be injected is determined in advance. Then, according to duration of fuel injection, 5 cases with the same fuel mass but different fuel mass flow rate are simulated. After fuel is injected into the driven section, the fuel and air will be mixed with each other through convection and diffusion processes. The mixing time is predicted numerically for experiments.

A Numerical Study on the Burning Velocity of LFG Mixing Gas (LFG(Landfill Gas) 혼합가스의 연소속도에 대한 수치해석적 연구)

  • 정익산;오창보;이창언
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.171-180
    • /
    • 1999
  • In this study, the burning velocity of LFG and LFG mixing fuels related with flame stabilization have been analyzed numerically using C3 reaction mechanism which consists of 92 species and 621 reaction for using LFG. The results show that the burning velocities of LFG and LFG mixing fuels are obtained as a function of CH$_4$ and LFG percent in stoichiometric conditions. Also, a correlation of the burning velocities LFG and LFG mixing fuels are obtained over a wide range of equivalence ratio. The comparison of burning velocity from correlation with that calculated numerically show good agreements. From these results, the proposed burning velocity correlations for LFG and LFG mixing fuels can be applied for the practice of LFG.

  • PDF