• Title/Summary/Keyword: Gas mixing

Search Result 1,054, Processing Time 0.027 seconds

Antifungal activity of extracts from Chamaecyparis obtusa and Pseudotsuga menziesii against Trichoderma spp. (국내산 침엽수 추출물의 Trichoderma spp.에 대한 항균활성)

  • Jung, Ji-Young;Kim, Ji-Woon;Kim, Yeong-Suk;Park, Han-Min;Lee, Byung-Hyun;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.1-11
    • /
    • 2011
  • The aim of this study was development of natural antifungal compounds from softwood. We investigated antifungal activities of extracts from Pseudotsuga menziesii and Chamaecyparis obtusa against Tricholderma genus which is virus causing green mold disease and analyzed antifungal compounds by Gas chromatography -Mass Spetrometer. Extracts from P. menziesii had inhibition activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 70.1%, T. harzianum by 67.3% and T. aggressivum by 64.7% on 4,000 ppm. And extracts from C. obtusa had antifungal activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 63.2%, T. harzianum by 59.3% and T. aggressivum by 59.1% on 4,000 ppm. But mixing compounds which are made from P. menziesii and C. obtusa extracts by variety ratio had lower antifungal activities than original extracts. Main antifungal active components of P. menziesii extracts against Tricholderma genus were 2-Isopropoxy-ethylamine 46.5%, epifluorohydrin 8.6%, trans-2,3-Di-methyloxirane 7.6%, (IR)-(-)-Myrtenal 6.0%, 2-Methoxy-4-Vinylphenol 3.9% and benzaldehyde 2.8%. In case of C. obtusa extracts, they were ${\alpha}$-Terpinenyl acetate 14.9%, Sabinene 10.9%, dl-Limonene 9.6%, ${\alpha}$-Terpinolene 7.5% and ${\alpha}$-Pinene 7.1%. As mentioned above, these results revealed extracts from P. menziesii and C. obtusa of softwood could be used as potential agents to inhibit Trichoderma genus.

ICT-Based Ginseng Process Ginseng Plant Composition Analysis (ICT 기반의 인삼 공정 육묘 시 인삼 식물체 분석)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.63-70
    • /
    • 2021
  • In order to compare and investigate the growth rates of each of the various soils, the soil mixing ratios were varied to four soils (Pitmos, Pearlite, Masato, General Soil, and Cocopeat). Ten were selected for each soil ratio and the average length and weight were compared. As a result, in the ratio of No. 1 pitmos 6.5: Perlite 2: Masato 1.5, it was measured as 16.36cm, 0.60g. In the ratio of No. 2 pitmos 10, 13.74cm, 0.41g. In the ratio of No. 3 general clay 10, it was measured as 12.43cm, 0.26g. 4 general clay 8, 0.39g. The growth rate of each soil was measured to be superior to that of other soil growth environments in the ratio of pitmos 6.5: pearlite 2: masato 1.5 soil. For ginseng plant analysis, 30 ginseng plants grown in the average length and weight of each soil at a ratio of 6.5: pearlite 2: masato 1.5 and relatively low-result general soil were selected and analyzed. As a result, 1,040ppm of nitrite nitrogen(NO3-N) was higher in ginseng plants grown in general soil. There was no significant difference in phosphoric acid(P), potassium(K), and magnesium(Mg). Ginseng is characterized by poor growth when it exceeds 300ppm by combining ammonia tae (NH4-N) and nitrate tae (NO3-N) nitrogen. In addition, nitric acid produced in a part of this nitrite makes the pH reaction of the soil acidic, and the nitrite remaining in the soil evaporates into gas.

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF