• Title/Summary/Keyword: Gas methane

Search Result 1,286, Processing Time 0.023 seconds

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles (알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성)

  • Fang, Xiaoyi;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.

Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels (저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향)

  • Lee, Jewon;Roh, Y.S.;Sung, J.H.;Lim, S.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.

On the Characteristics of Sludge Combustion for Developing Safe and Reusable Energy (슬러지 연소 특성을 통한 신재생에너지의 안전성 연구)

  • Park, Kyong-Jin;Yoh, Jai-Ick;Yoon, Hee-Chul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.42-45
    • /
    • 2006
  • A new and reusable energy source is water-treatment sludges. There is a significant need for understanding the characteristics of sludge combustion related to improving efficiency and ensuring the safety of this new energy source. Because sludges are composed of solids and gas mixture, the combustion of the mixture may become quite complex. Not only decomposition of conventional organic elements but also dust explosion may be important during the process of converting sludges into a new and safe form of energy. Sludge combustion mainly involves hydrogen, methane, hydro carbons, carbon, and organic particles. Dust explosion during the gasification stage may depend on the surrounding temperature and the composition of gases. The uncertainty in the explosive behavior of energetic source is noted in this work. We study the explosion characteristics of sludge combustion while the reusability of sewage sludges as a new form of energy is also investigated.

  • PDF

Microscopic investigation on the binary ethanol + $CH_4$ Hydrate system (ethanol + $CH_4$ 하이드레이트 시스템의 미세 분광학적 연구)

  • Lee, Jong-Won;Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.149.1-149.1
    • /
    • 2010
  • 가스 하이드레이트는 작은 고체 부피 내에 막대한 양의 가스를 저장할 수 있다는 특징으로 인하여 최근 주목을 받고 있지만, 엔지니어링 분야에서는 천연가스 수송 파이프라인에 blockage problem을 일으키는 해로운 물질로 처음 관심을 받았다. 이러한 문제를 해결하기 위한 방법으로 초기에는 하이드레이트 형성영역을 벗어나도록 온도, 압력을 유지하기도 하였으나, 최근에는 다양한 형성 억제제가 사용되고 있다. 본 연구에서는 기존에 억제제로 알려져 있는 대표적인 알코올 화합물인 에탄올을 이용하여 고압의 메탄과 binary 하이드레이트의 형성 연구를 수행하였다. 다양한 농도의 에탄올을 이용하여 형성된 하이드레이트 샘플은 고체 NMR 분석을 통하여 분자 거동을 자세히 측정하였으며, 분말 XRD 분석을 통하여 헝성된 미세 결정 구조도 확인하였다. 본 연구에서 얻어진 결과는 에탄올 및 알코올 화합물의 가스 하이드레이트 형성 거동 및 binary guest 시스템에서의 tuning 효과에 대한 유용한 정보를 제시할 수 있을 것이라 판단된다.

  • PDF

Measurement and Calculation of Laminar Burning velocity on Methane-Air Premixture (메탄-공기 예혼합기의 층류 화염속도 측정 및 계산)

  • Kwon, Soon-Ik;Kim, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.21-27
    • /
    • 2006
  • The laminar burning velocity was measured using a spherical combustion bomb with central ignition. Mixtures with equivalence ratio between 0.6 and 1.2, were tested. The computation was carried out for the burning velocity using premix code of Chemkin program under the unburned gas pressure of 0.5bar-30bar and temperature of 300K-700K at ${\Phi}1.0$. The results showed little difference between these two methods. The burning velocity was decreased by increasing the pressure and increased by increasing the temperature. The burning velocity was predicted by using the following equations $$S_L(m/s) = S_{st}(T/300)^{1.85}(P)^{-0.45}$$ $$(0.5bar{\leq}P{\leq}30bar,\;300K{\leq}T{\leq}700K)$$).

  • PDF

Two-stage anaerobic biogas plant using piggery wastewater (축산분뇨를 이용한 바이오가스 플랜트)

  • Park, Hyung-Wan;Lee, Hyun-Sang;Park, Kyung-Ho;Kim, Keum-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.251-255
    • /
    • 2008
  • Biogas plant was started in 2007 for the purpose of treatment of $20m^3$/d of wastewater from piggery farm, biogas-production and electricity generation during treatment of the wastewater. The biogas plant is consists of two anaerobic digesters, gas holder and 60 kWe generator. $62,287m^3$ of biogas was produced and 74,745kWh electricity was generated by using the biogas after commencing the biogas plant.

  • PDF

NUMERICAL STUDY OF STREAM REFORMER AND PRECONVERTER FOR MCFC (MCFC용 개질기 및 프리컨버터의 수치연구)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, various operating parameters of stream reforming process from methane in stream reformer and preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature and different reactor shapes. The calculated results of the concentration of hydrogen in stream reformer are very well consistent with experimental results. This numerical study gives the design reactor wall temperature condition and size of reactor to satisfy the required fuel conversion.

Characterization of Fe Nanocapsules synthesized by Plasma Arc Discharge Process (플라즈마 아크방전(PAD)법으로 제조된 Fe Nanocapsules의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.510-514
    • /
    • 2004
  • Iron-carbon nanocapsules were synthesized by plasma arc discharge (PAD) process under various atmosphere of methane, argon and hydrogen gas. Characterization and surface properties were investigated by means of HRTEM, XRD, XPS and Mossbauer spectroscopy. Fe nanocapsules synthesized were composed of three phases $({\alpha}-Fe,\;Y-Fe\;and\;Fe_{3}C)$ with core/shell structures. The surface of nanocapsules was covered by the shell of graphite phase in the thickness of $4{\~}5$nm.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-chamber(I) -Effect of Geometric Configurations of Passagehole on Combustion- (부실식 정적연소실내 연소특성에 관한 연구(I) -연락공의 기하학적 형상이 연소에 미 치는 영향-)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.66-79
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we have designed a constant volume combustion chamber with sub-chamber. With constant volume ratio of main-sub combustion chamber and constant equivalence ratio of methane-air mixture, the influence of geometric configurations(diameter, injection angle, number, length) of passagehole upon combustion characteristics were studied. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the injection angle and length of passagehole.

  • PDF

Production and Use of Feed for Sustainable Animal Production in Australia - Review -

  • Rowe, J.B.;Corbett, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.435-444
    • /
    • 1999
  • This paper summarizes the size and output of the major animal industries in Australia and the feed resource available to maintain production. The most important feed source is pasture but there is also extensive use of cereal grains, pulses and by-products in the intensive animal industries and in supplementing the diet of grazing animals. These resources must be used in ways that ensure sustainable production. We outline a number of Decision Support Systems such as GrazFeed, GrassGro, and AusPig which play an important role in optimizing the way in which resources are used. Waste management with respect to mineral pollution of water courses and methane production as a greenhouse gas are important issues for the animal industries and are also considered.