• Title/Summary/Keyword: Gas methane

Search Result 1,275, Processing Time 0.032 seconds

Environmental Degradation Index for the Reduction of Packing Wastes (포장 폐기물 감량을 위한 환경저해지수 제안)

  • Hong, Ho-jin;Cho, Hyun-min;Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.26-33
    • /
    • 2020
  • The plastic waste problem is deepening all over the world. Plastic wastes have serious impacts on our lives as well as environ- mental pollution. The production and use of plastics increases every year, but once they are produced, they usually roam the earth for hundreds or thousands of years to pollute the environment. Although there is growing interest in plastic issues around the world and environmental regulations are being tightened, but no clear solution has yet been found. This study suggests Environmental degradation index (EDI). EDI can help raise consumers' attention to plastic wastes. In addition, EDI will contribute to reduce them in the future. As far as we know, this is the first study. We developed EDI for the confectionery packaging. This study defines four factors that may affect the environment of confectionery packaging: greenhouse gas emissions, energy consumption, methane emissions, and packaging space ratio. Then we quantify the value of each element and compute EDI as the sum of the four component values. In order to evaluate the feasibility of EDI proposed in this study, confectionery-packaging materials distributed in Korea were collected and analyzed. First, the types of confectionery are classified into pies, biscuits, and snacks and basic data was collected. Then the values of the four components were calculated using existing research data on the environment. We can use the proposed EDI to determine how much a product packing affects the environment.

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

The Effects of Methyl Borate, Iodine and Potassium Iodide on the Radiolysis of Methanol by Co-60 Gamma Rays (붕산메틸, 요오드 및 요오드화칼륨이 메탄올의 Co-60 放射線分解에 미치는 영향)

  • Choi, Sang-Up
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.106-109
    • /
    • 1965
  • The effects of methyl borate, iodine and potassium iodide on the Co-60 gamma radiolysis of methanol have been reinvestigated at room temperature, utilizing an experimental technique based on gas chromatographic determinations of the gaseous products of the radiolysis. The presence of methyl borate reduces the yield for ethylene glycol to some extent, with slight reductions of the yields for hydrogen and formaldehyde. The presence of iodine causes appreciable reduction of the yields for hydrogen, formaldehyde and ethylene glycol, with a slight reduction of the yield for methane. The presence of potassium iodide reduces the yields for hydrogen and ethylene glycol but increases that for formaldehyde. A mechanism of the radiolysis reaction is discussed, on the basis of the observed data.

  • PDF

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

The Study on the Synthesis of Triazole Derivatives as Energetic Plasticizer (트리아졸 계열의 에너지 가소제 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • Most of propellants that is used widely in the world release toxic gases such as methane gas and carbon dioxide during combustion which are noxious to the environment. This study established a synthetic process of a high nitrogen containing derivative of triazole, 4,5-bis(azidomethyl)-methyl-1,2,3-triazole (DAMTR), which can be applied as energetic plasticizer to environmental concerns. Also, the compound was characterized by NMR, IR spectroscopy, and physical properties such as glass transition temperature, melting point, decomposition temperature, density, impact sensitivity, viscosity and volatility were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMTR were calculated using Gaussian 09 and EXPLO5 programs.

Diamond Crystal Growth Behavior by Hot Filament Chemical Vapor Deposition According to Pretreatment Conditions

  • Song, Chang Weon;You, Mi Young;Lee, Damin;Mun, Hyoung Seok;Kim, Seohan;Song, Pung Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.241-248
    • /
    • 2020
  • The change of the deposition behavior of diamond through a pretreatment process of the base metal prior to diamond deposition using HFCVD was investigated. To improve the specific surface area of the base material, sanding was performed using sandblasting first, and chemical etching treatment was performed to further improve the uniform specific surface area. Chemical etching was performed by immersing the base material in HCl solutions with various etching time. Thereafter, seeding was performed by immersing the sanded and etched base material in a diamond seeding solution. Diamond deposition according to all pretreatment conditions was performed under the same conditions. Methane was used as the carbon source and hydrogen was used as the reaction gas. The most optimal conditions were found by analyzing the improvement of the specific surface area and uniformity, and the optimal diamond seeding solution concentration and immersion time were also obtained for the diamond particle seeding method. As a result, the sandblasted base material was immersed in 20% HCl for 60 minutes at 100 ℃ and chemically etched, and then immersed in a diamond seeding solution of 5 g/L and seeded using ultrasonic waves for 30 minutes. It was possible to obtain optimized economical diamond film growth rates.

A Study on the Development of Simulating Tool for Evaluation of Electrostatic Discharge (정전기 방전 평가를 위한 간이형 도구 개발에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2011
  • Explosion and fire cause about 30 reported industrial major accidents a year by ignition source which discharge of electrostatic generated to flammable gas, vapor, dust and mixtures. It brings economically and humanly very large loss that accident was caused by fire and explosion from electrostatic discharge. Thus, it is very important that electrostatic discharge energy is to be control below not to be igniting flammable mixtures. There are two kinds of analysis model for electrostatic discharge, human body model and machine model. Human body model is available the parameter of human's electrical equivalent that capacitance is 100 pF, resistance is $1.5k{\Omega}$. To simulate and visualize the electrostatic discharge from human body need a very expensive and high voltage simulator. In this paper, we measured the value of capacitance and resistance concerned with test materials and sizing of specimen and the value of charged voltage concerned with test specimen and distance to develop an electrostatic charge/discharge simulating tool for teaching with which concerned industrial employee and students. The result of experiments, we conformed that the minimum ignition energy of methane-oxygen mixtures meets well the equation $W=1/2CV^2$, and found out that the insulating material and sizing of equivalent value having human body mode are the poly ethylene of 200 mm and 300 mm of diameter. Developed electrostatic charge/discharge simulating tool has many merits; simple mechanism, low cost, no need of electric power and so on.

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.

Emission Characteristics of Greenhouse Gases (CH4, N2O) in Mechanically Ventilated Swine Farm during Winter Season (겨울철 강제환기식 돈사 내 온실가스 (CH4, N2O) 배출 특성 연구)

  • Park, Junyong;Jung, Minwoong;Jo, Gwanggon;Jang, Yu-Na
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • The emission characteristics and emission factors were determined by measuring the concentration of methane (CH4) and nitrous oxide (N2O), the amount of ventilation, etc. in the two fattening rooms which have the same environment in winter. As a result of monitoring, the average concentration of CH4 and N2O was 20.7-26.7 ppm and 1.4-1.6 ppm. The average temperature inside the room was measured at 20.0-21.4℃, and the average ventilation was 1345.4-1567.3 m3/h. The daily emission of CH4 for the first 30 days showed a constant emission of 3.6-8.2 g/d/m2/pig, but thereafter, the emission increased rapidly. The daily emission of N2O was 0.7-1.3 g/d/m2/pig, showing stable emission during the test period, and relatively insignificant emission compared to the emission of CH4. After repeated test, it was confirmed that there was no significant difference between the two rooms. As a result, the CH4 6. 21 g/d/m2/pig and N2O 1.02 g/d/m2/pig average emission for each room was derived.