Browse > Article
http://dx.doi.org/10.5389/KSAE.2021.63.4.033

Emission Characteristics of Greenhouse Gases (CH4, N2O) in Mechanically Ventilated Swine Farm during Winter Season  

Park, Junyong (Division of Animal Environment, National Institute of Animal Science (NIAS))
Jung, Minwoong (Division of Animal Environment, National Institute of Animal Science (NIAS))
Jo, Gwanggon (Geum River Basin Environment Office, Ministry of Environment)
Jang, Yu-Na (Division of Animal Environment, National Institute of Animal Science (NIAS))
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.63, no.4, 2021 , pp. 33-41 More about this Journal
Abstract
The emission characteristics and emission factors were determined by measuring the concentration of methane (CH4) and nitrous oxide (N2O), the amount of ventilation, etc. in the two fattening rooms which have the same environment in winter. As a result of monitoring, the average concentration of CH4 and N2O was 20.7-26.7 ppm and 1.4-1.6 ppm. The average temperature inside the room was measured at 20.0-21.4℃, and the average ventilation was 1345.4-1567.3 m3/h. The daily emission of CH4 for the first 30 days showed a constant emission of 3.6-8.2 g/d/m2/pig, but thereafter, the emission increased rapidly. The daily emission of N2O was 0.7-1.3 g/d/m2/pig, showing stable emission during the test period, and relatively insignificant emission compared to the emission of CH4. After repeated test, it was confirmed that there was no significant difference between the two rooms. As a result, the CH4 6. 21 g/d/m2/pig and N2O 1.02 g/d/m2/pig average emission for each room was derived.
Keywords
Emission factor; greenhouse gas; mechanical ventilation; swine; winter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Monteny, G. J., A. Bannink, and D. Chadwick, 2006. Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment 112: 163-170. doi:10.1016/j.agee.2005.08.015.   DOI
2 Ngwabie, N. M., S. Nimmermark, and G. Gustafsson, 2011. Effects of animal and climate parameters on gas emissions from a barn for fattening pigs. American Society of Agricultural and Biological Engineers 27(6): 1027-1038. doi:10.13031/2013.40619.   DOI
3 Park, W. K., H. B. Jun, N. B. Park, and S. G. Hong, 2010. Solubilization characteristics of piggery slurry by different storage type and temperature conditions. Korean Journal of Environmental Agriculture 29(4): 348-353 (in Korean). doi:10.5338/KJEA.2010.29.4.348.   DOI
4 Philippe, F. X., and B. Nicks, 2015. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment 199: 10-25. doi:10.1016/j.agee.2014.08.015.   DOI
5 Brown, H. A., C. Wagner-Riddle, and G. W. Thurtell, 2000. Nitrous oxide flux from solid dairy manure in storage as affected by water content and redox potential. Journal of Environmental Quality 29(2): 630-638. doi:10.2134/jeq2000.00472425002900020034.   DOI
6 Dai, X. R., and V. Blanes-Vidal, 2013. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration. Journal of Environmental management 115: 147-154. doi:10.1016/j.jenvman.2012.11.019.   DOI
7 Food Agriculture Organization (FAO), 2017. World agriculture: towards 2015/2030. An FAO perspective. FAO Rome 97.
8 Zong, C., H. Li, and G. Zhang, 2015. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agriculture, Ecosystems and Environment 208: 94-105. doi:10.1016/j.agee.2015.04.031.   DOI
9 Poth, M., and D. D. Focht, 1985. 15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification. Applied and Environmental Microbiology 49: 1134-1141. doi:10.1128/aem.49.5.1134-1141.1985.   DOI
10 Intergovernmental Panel on Climate Change (IPCC), 2006. Guidelines for national greenhouse gas inventories. Agriculture forestry and other land use. Intergovernmental Panel on Climate Chang, vol. 4. Insititute for Global Environmental Strategies (IGES). Kamiyamaguchi, Hayama, Kanagawa, Japan.
11 Shin S. R., S. W. Im, A. Mostafa, M. K. Lee, Y. M. Yun, S. E. Oh, and D. H. Kim, 2019. Effects of pig slurry acidification on methane emissions during storage and subsequent biogas production. Water Research 152: 234-240. doi:10.1016/j.watres.2019.01.005.   DOI
12 Cardador, M. J., C. Reyes-Palomo, C. Diaz-Gaona, L. Arce, and V. Rodiguez-Estevez, 2020. Review of the methodologies for measurement of greenhouse gas emissions in livestock farming: pig farms as a case of study. Critical Reviews in Analytical Chemistry 1-19. doi:10.1080/10408347.2020.1855410.   DOI
13 Oenema, O., N. Wrage, G. L. Velthof, J. W. Van Groenigen, J. Dolfing, and P. J. Kuikman, 2005. Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems 72(1): 51-65. doi:10.1007/s10705-004-7354-2.   DOI
14 Amon, B., V. Kryvoruchko, T. Amon, and S. Zechmeister-Boltenstern, 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment 112(2-3): 153-162. doi:10.1016/j.agee.2005.08.030.   DOI
15 Cabaraux, J. F., F. X. Philippe, M. Laitat, B. Canart, M. Vandenheede, and B. Nicks, 2009. Gaseous emissions from weaned pigs raised on different floor systems. Agriculture, Ecosystems and Environment 130(3-4): 86-92. doi:10.1016/j.agee.2008.11.016.   DOI
16 Jo, G. G., Y. N. Jang, T. H. Ha, S. E. Woo, and M. W. Jung, 2020c. Ammonia emission characteristics during the finishing periods of pigs housed with mechanical ventilation system. Journal of Agriculture and Life Science 54(3): 63-71 (in Korean). doi:10.14397/jals.2020.54.3.1   DOI
17 Dong, H., Z. Zhu, Z. Zhou, H. Xin, and Y. Chen, 2011. Greenhouse gas emissions from swine manure stored at different stack heights. Animal Feed Science Technology 166(167): 557-561. doi:10.1016/j.anifeedsci.2011.04.039.   DOI
18 American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), 1993. ASHRAE Handbook: Fundamentals.
19 Ye, Z., G. Zhang, L. H. Seo, P. Kai, C. K. Saha, C. Wang, and B. Li, 2009. Airflow characteristics at the surface of manure in a storage pit affected by ventilation rate, floor slat opening, and headspace height. Biosystems Engineering 104(1): 97-105. doi:10.1016/j.biosystemseng.2009.05.005.   DOI
20 Dong, H., G. Kang, Z. Zhu, X. Tao, Y. Chen, H. Xin, and J. D. Harmon, 2009. Ammonia, methane, and carbon dioxide concentrations and emissions of a hoop grower-finisher swine barn. Transactions of the ASABE 52(5): 1741-1747. doi:10.13031/2013.29136.   DOI
21 Masse, D. I., L. Masse, S. Claveau, C. Bdnchaar, and O. Thomas, 2008. Methane emissions from manure storages. Transactions of the ASABE 51(5): 1775-1781. doi:10.13031/2013.25311.   DOI
22 Greenhouse Gas Inventory and Research Center of Korea, 2014. National greenhouse gas emission and absorption factor development verification first plan 2015-2019 (in Korea).
23 Intergovernmental Panel on Climate Change (IPCC), 2014. Contribution of Working Groups l, ll and lll to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland 151.
24 Jeong, H. C., E. J. Choi, J. S. Lee, G. Y. Kim, and S. I. Lee, 2017. The analysis of differences by improving GHG emission estimation methodology for agricultural sector in recent 5 years. Journal of Climate Change Research 8(4): 347-355 (in Korean). doi:10.15531/KSCCR.2017.8.4.347.   DOI
25 Jo, G. G., T. H. Ha, Y. N. Jang, S. Y. Seo, and M. W. Jung, 2020a. A study on ammonia emissions characteristics during growing period of pigs in facility with mechanical ventilation system. Journal of Odor and Indoor Environment 19(1): 1-10 (in Korean). doi:10.15250/joie.2020.19.1.29.   DOI
26 Jo, G. G., T. H. Ha, S. H. Yoon, Y. N. Jang, and M. W. Jung, 2020b. Comparison of regression models for estimating ventilation rate of mechanically ventilated swine farm. Journal of the Korean Society of Agricultural Engineers 62(1): 61-70 (in Korean). doi:10.5389/KSAE.2020.62.1.063.   DOI
27 Park, S. M., H. B. Jun, C. O. Choi, and J. S. Lee, 2005. Influence of COD/Nitrate-N ratio on denitrification and methanogenesis in anaerobic sludge. Korean Society of Environmental Engineers 27(7): 739-745 (in Korean).
28 Wang, K., D. Huang, H. Ying, and H. Luo, 2014. Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. Biosystems Engineering 122: 23-30. doi:10.1016/j.biosystemseng.2014.03.002.   DOI
29 Thompson, A. G., C. Wagner-Riddle, and R. Fleming, 2003. Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment 91(1): 87-104. doi:10.1023/B:EMAS.0000009231.04123.2d.   DOI
30 Zhuang, M., N. Shan, Y. Wang, D. Caro, R. M. Fleming, and L. Wang, 2020. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China. Science of the Total Environment 722: 137693. doi:10.1016/j.scitotenv.2020.137693.   DOI
31 Kam, D. H., K. H. Park, D. Y. Choi, M. S. Jung, B. R. Min, D. W. Lee, and J. K. Kim, 2011. Measurements of greenhouse gas from the manure in the piggery. Journal of Animal Environmental Science 17(3): 155-162 (in Korean).
32 Kebreab, E., K. Clark, C. Wagner-Riddle, and J. France, 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Canadian Journal of Animal Science 86(2): 135-137. doi:10.4141/a05-010.   DOI
33 Lin, Y. F., and K. C. Chen, 1993. The relationship between denitrifying bacteria and methanogenic bacteria in a mixed culture system of acclimate sludges. Water Research 27(12): 1749-1759. doi:10.1016/0043-1354(93)90113-V.   DOI