• Title/Summary/Keyword: Gas insulation

Search Result 540, Processing Time 0.022 seconds

Analysis on the Dielectric Characteristics of Various Insulation Gases for Developing a Sub-cooled Liquid Nitrogen Cooling System (과냉질소 냉각시스템 가압용 기체의 절연내력특성 분석)

  • Kang, H.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2011
  • A sub-cooled liquid nitrogen cooling system is known as a most promising method to develop large scale superconducting apparatuses such as superconducting fault current limiters and superconducting cables [1]. Gaseous helium (GHe), gaseous nitrogen ($GN_2$) and sulfur hexafluoride ($SF_6$) are commonly used for designing an high voltage applied superconducting device as an injection gaseous medium [2, 3]. In this paper, the analysis on the dielectric characteristics of GHe, $GN_2$ and $SF_6$ are conducted by designing and manufacturing sphere-to-plane electrode systems. The AC withstand voltage experiments on the various gaseous insulation media are carried out and the results are analyzed by using finite element method (FEM) considering field utilization factors (${\xi}$). It is found that the electric field intensity at sparkover ($E_{MAX}$) of insulation media exponentially decreases according to ${\xi}$ increases. Also, the empirical expressions of the functional relations between $E_{MAX}$ and ${\xi}$ of insulation media are deduced by dielectric experiments and computational analyses. It is expected that the electrical insulation design of applied superconducting devices could be performed by using the deduced empirical formulae without dielectric experiments.

An Experimental Study on the Insulation Property of Light-Weight Foamed Concrete according to Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 단열특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Sun, Joung-Soo;Lee, Jung-Goo;Choi, Duck -Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • Recently, use of light-weight panel is increasing in building. Styrofoam sandwich panel is inexpensive and it is excellent in insulation ability and constructability. But styrofoam of panel inside is low ignition point. Consequently, when panel is fired, it is occur in poisonous gas. On the other hand, light-weight foamed concrete is excellent in insulation ability, fire resistance due to inner pore. Properties of light-weight concrete is influenced by foaming agent type. Accordingly, this study investigate in insulation property of according to foaming agent type in order to using light-weight foamed concrete instead of styrofoam. As a results, Non-heating zone temperature of light-weight foamed concrete of using AP, FP are lower than light-weight foamed concrete of using AES. Light-weight foamed concrete of using AES, FP are satisfied with fire performance of two hours at foam ratio 50, 100. Light-weight foamed concrete of using AP is satisfied with fire performance of two hours at AP ratio 0.1, 0.15. Insulation property is better closed pore by made AP, FP than open pore by made AES.

  • PDF

Thermal Analysis for the GT-96 Membrane Type LNGC during the Cool-down Period (GT-96 멤브레인형 LNGC의 급냉기간에서의 열해석)

  • Lee, Jung-Hye;Choi, Hyun-Kue;Choi, Soon-Ho;Oh, Cheol;Kim, Myoung-Hwan;Kim, Kyung-Kun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1346-1351
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000 $m^3$ class GT-96 membrane type LNG carrier under IMO design condition. The cool-down is performed to cool the insulation wall and the natural gas in cargo tank for six hours to avoid the thermal shock at the start of loading of $-163^{\circ}C$ LNG. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls clown from $-40^{\circ}C$ to $-130^{\circ}C$ and the spraying rate for the insulation wall cooling increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the 1 st barrier and 1st insulation, which are among the insulation wall, especially in the top side of the insulation wall. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted.

  • PDF

Insulation Characteristics of Dry-air Insulated Switchgear for 72.5 kV Wind Power Generation (72.5 kV 풍력 발전용 Dry-air Switchgear의 절연 특성)

  • Chan-Hee Yang;Jin-Seok Oh;Hee-Tae Park;Young-il Kim
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.5-9
    • /
    • 2024
  • This paper describes the insulation breakdown characteristics of 72.5 kV dry-air insulated switchgear under development for installation in a wind power generator when a lightning impulse voltage is applied. For this study, the weak point of insulation due to the electric field concentration of the switchgear's internal shape was identified by finite element method (FEM) analysis, and the shape was actually simulated to measure and analyze the polarity of the lightning impulse voltage and the insulation breakdown characteristics according to the gas pressure at dry-air pressures of 0.1 Mpa to 0.45 Mpa. This study derives the maximum electric field with a 50 % discharge probability for each switchgear internal insulation vulnerable point based on the actual test and electrical simulation, which will be useful as reference data for supplementing and changing insulation design in the future.

Electrical and Mechanical Properties of Epoxy/Micro-sized Alumina Composite and the Effect of Nano-sized Alumina on Those Properties

  • Park, Jae-Jun;Shin, Seong-Sik;Yoon, Chan-Young;Lee, Jae-Young;Park, Joo-Eon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.260-263
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared and the effects of alumina content on the electrical and mechanical properties were investigated in order to develop an insulation material for gas insulated switchgear (GIS). Nano-sized alumina (average particle size: 30 μm) was also incorporated into the epoxy/micro-sized alumina composite. An electrical insulation breakdown strength test was carried out in sphere-sphere electrodes and the data were estimated by Weibull statistical analysis. Tensile strength was measured at a crosshead speed of 10 mm/min using a universal testing machine. Alumina content was varied from 0 wt% to 70 wt%.). As micro-sized alumina content increased, insulation breakdown strength increased until 40 wt% alumina content and decreased after that content. The tensile strength of a neat epoxy system was 82.2 MPa and that value for 60 wt% alumina content was 91.8 MPa, which was 111.7% higher than inthe neat epoxy system. The insulation breakdown strength of micro-sized alumina (60 wt%)/nano-sized alumina (1 phr) glycerol diglycidyl ether (GDE) (1 phr) composite was 54.2 MPa, which was 116% higher than the strength of the system without nano-sized alumina.

Breakdown Characteristics Assess of Imitation-Air for Distribution Power Facilities (배전급 전력설비를 위한 제조공기의 절연성 평가)

  • Lee, Kwang-Sik;Do, Yeong-Hoei;Choi, Eun-Hyeok;Lee, Chang-Uk;Park, Kwong-Seoo;Kim, Lee-Kook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-119
    • /
    • 2008
  • With the improvement of industrial society, the high quality electrical energy, simplification of operation and maintenance, ensuring reliability are being required. We request urgently change a $SF_6$ for an environment friendly gas insulation material. In this paper the experiments of breakdown characteristics by pressure and gap change of Imitation-Air in model GIS(Gas Insulated Switchgear) were described. Also assess of breakdown characteristics about Imitation-Air and $SF_6$. It is considered in this paper that the results are fundamental data for electric insulation design of Distribution Power Facilities which will be studied and developed in the future. The pressure to be confronted to $SF_6$ gas 1[atm] for Distribution Power Facilities is Imitation-Air 3[atm]. And we could make an environment friendly gas insulation material with maintaining dielectric strength by Imitation-Air which generates a lower level of the global warming effect.

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.

Changes in Insulation Performance of Organic Insulating Materials for Building Construction by Accelerated Durability Test Conditions (가속내구성 조건에 따른 건축용 유기계 단열재의 단열성능 변화)

  • Lim, Soon-Hyun;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.595-601
    • /
    • 2016
  • The insulation performance of the insulation currently used in building structures is reflected only during design based on initial performance and the reduction in heat insulation performance due to the degradation of long-term durability is not reflected. This study reviewed the degradation of heat insulation performance due to the durability degradation of insulating materials through the accelerated durability test. The study findings showed that the foamed polystyrene insulation bead method did not show performance degradation due to aging in the standard environmental condition and laboratory accelerated test condition but the performance is degraded in the freeze-thaw test condition. On the other hand, in the case of the extrusion method, the degradation of the heat insulation performance was less in the freeze-thaw test condition, but the rapid performance degradation was caused by the release of the internal gas at the beginning of aging. In addition, the hard polyurethane foam insulation showed better initial insulation performance than other insulation materials, but the performance was found to be degraded somewhat under laboratory accelerated test conditions and freeze-thaw test conditions.

On the Leakage Safety Analysis of $9\%$ Nickel Type LNG Storage Tank with Thermal Resistance Effects (열저항 효과를 고려한 $9\%$ 니켈강재식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y,G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, the FE analysis has been presented for the leakage safety of $9\%$ nickel type LNG storage tank based on the thermal resistance effects between insulation panels, comer protection and prestressed concrete(PC) structures. The FEM calculated results show that the leakage safety of fiber glass blanket, perlite powder and cellular glass insulators does not guarantee any more due to a strength failure of the insulation structure. But the corner protection and PC structure of outer tank may delay or sustain the leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that $9\%$ nickel steel type LNG storage tank may be safe because of a high strength of the corner protection and outer tank structures.

  • PDF

Breakdown characteristics of SF6 and Imitation Air in Temperature Decline

  • Lim, Chang-Ho;Choi, Eun-Hyeok;Kim, Do-Seok;Kim, Young-Su;Park, Won-Zoo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.115-121
    • /
    • 2007
  • This paper describes experiments of the breakdown characteristics by temperature change of $SF_6$ gas and Imitation Air(I-Air) in model GIS(Gas Insulated Switchgear). From the results of the experiments, the breakdown characteristics classify the vapor stage of $SF_6$ according to Paschen's law, in which the stage of coexistence for gas & liquid of the voltage value increases. This results in large deviation and the breakdown of the voltage(VB) low stage as the interior of the chamber is filled with a mixture of $SF_6$ that is not liquefacted and remaining air that can not be ventilated. The ability of $SF_6$ liquid($LSF_6$) insulation is higher than high-pressurize $SF_6$ gas. The VB of the I-Air decreases as the temperature drops and the VB also drops. It is considered that the results of this paper are fundamental data for the electric insulation design of superconductor and cryogenic equipment that will be studied and developed in the future.