• Title/Summary/Keyword: Gas insulated switchgears (GIS)

Search Result 19, Processing Time 0.019 seconds

The Development and the Performance Test of Bay Controller for the High-Voltage Gas Insulated Switchgear (초고압 가스절연개폐기의 베이 컨트롤러 개발 및 성능시험)

  • Woo, Chun-Hee;Lee, Bo-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • The digital substation automation system has contributed hugely to increasing the stability of power systems by providing not only protection and control of power systems but diagnostic features alongside them. Digital substation automation systems in the scale of substations consist of integrated operation systems and intelligent electronic devices. The main intelligent electronic devices currently in use are digital protection relays and the bay controllers in Gas insulated switchgears. Proficiently accomplishing the coordination of protection within the power system as a means of ensuring reliability and contriving for the stability of power supply through connection of function, the application of bay controllers is crucial, which collectively manage the protection relay at the bay level in order to achieve both. In this research, the bay controllers to be used in high-voltage Gas insulated switchgear has been localized, and in particular, the logic function and editor required in order to minimize the complicated hardware-like cable connections in the local panel have been developed. In addition, to ensure the strength and reliability of the bay controller hardware developed herein, the type tests from KERI have been successfully completed.

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

Construction of Reliability Assessment Infrastructure for Spacers in GIS (GIS용 절연스페이서 신뢰성령가기반 구축)

  • Lee, J.G.;Kim, M.K.;Kim, I.S;Jeong, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.180-181
    • /
    • 2006
  • In this paper, there have been brief review about the important consideration in laboratory planning and construction of the reliability assessment infrastructure including 400 kV, 120 kVA AC test system, which enable to evaluate the HV long-term overcharged withstand performance for spacers using in Gas Insulated Switchgears up to transmission class, Also it is described simply about its trial running of the whole test system and its assessment example. To inform the founded national code, RS C 0084, and the procedure for getting a reliability assessment certificate issued by the government, brief description of the code and summation of test results have been conducted.

  • PDF

A summary of KEPCO's 765kV substation design (한전 765kV 변전소의 기본설계 개요)

  • Kim, M.D.;Jung, S.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2139-2142
    • /
    • 1999
  • 765kV substations which will be the core installation of the bulk power transmission system in Korea for the upcoming $21^{st}$ century, were designed of outdoor full GIS type to minimize required area. As principal equipment, main transformers of 2,000 MVA per bank and 50kA 8,000A gas insulated switchgears of up-to-date technology were adopted in designing substations to transmit bulk power of 10GW. Dual digital protective relay systems and distributed indication and control systems with fiber optic LAN were used.

  • PDF

Influence Regularity of Aluminum, Copper and Stainless-steel on SF6 PD Decomposition Characteristics Components

  • Zeng, Fuping;Luo, Jing;Tang, Ju;Zhou, Qian;Yao, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.295-301
    • /
    • 2017
  • $SF_6$ decomposition products can be used to detect partial discharge (PD), but the metal materials in a PD area can significantly affect $SF_6$ decomposition characteristics. Disregarding the effect of metal materials on such characteristics inevitably result in certain errors when using them to diagnose the internal insulation faults of gas-insulated switchgears. This paper investigates the influence regularity on the main stable decomposition components of $SF_6$ (namely $SO_2F_2$ and $SOF_2$) of the commonly metal materials uesd in GIS, such as aluminum (Al), copper (Cu) and stainless steel (SS). Firstly, an experimental platform is constructed to simulate $SF_6$ decomposition under a PD area, and the influence regularities of Al, Cu and SS on the concentration, formation rate and saturation time of $SO_2F_2$ and $SOF_2$ are obtained. Secondly, the influence mechanism of Al, Cu and SS are preliminary explored combined with the chemical activity of the metal materials.

Partial Discharge Characteristics on Protrusion Defects in SF6-N2 Mixture Gases (SF6-N2 혼합가스 중 돌출 결함의 부분방전 특성)

  • Jo, Hyang-Eun;Wang, Guoming;Kim, Sun-Jae;Park, Kyoung-Soo;Kil, and Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • Studies on a $SF_6$-mixture and -alternative gas has been in progress to reduce the use of $SF_6$ gas as an insulation material of GIS (gas insulated switchgears). In this paper, we dealt with PD (partial discharge) characteristics in pure $SF_6$ and $N_2$, and their mixtures on aspects of insulation design and risk assessment for GIS. A POC (protrusion on conductor) and a POE (protrusion on enclosure) as the major defects were fabricated to simulate PD. We analyzed the DIV (discharge inception voltage), DEV (discharge extinction voltage), pulse magnitude, counts and phase distribution of PD pulse in $SF_6-N_2$ mixtures ($SF_6$ 100%, $SF_6$ 80%-$N_2$ 20%, $SF_6$ 50%-$N_2$ 50%, $SF_6$ 20%-$N_2$ 80%, and $N_2$ 100%) according to the IEC60270. The DIV, DEV as well as magnitude of PD pulse decreased on the POC as increase of $N_2$ ratio. For the POE, the DIV and DEV in $N_2$ ratio below 50% were the same voltages as those in $SF_6$ 100%. In this experiment, $SF_6$ 80%-$N_2$ 20% mixture could be considered with the equivalent insulation performance to a GIS.

Installation and Test Run of Comprehensive Analysis System for SF6 in Power Equipment

  • Lee, Jeong Eun;Kim, Kwang Sin;Kim, Ah Reum;Park, Seoksoon;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • After $SF_6$, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used $SF_6$ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing $SF_6$ recovery and refinement technology starting with establishing a comprehensive $SF_6$ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of $SF_6$ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of $SF_6$ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and $SO_2$, and moisture analyzer for analysis of moisture below 100 ppm. With this analysis system, complete analysis method of $SF_6$ has been established. This analysis system is being used in the maintenance of power equipment and the development of $SF_6$ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase $SF_6$ samples from a $SF_6$ refinement system before and after refinement are presented.

Analysis of Partial Discharge Characteristics in SF6 Gas Insulation (SF6 가스절연에서 부분방전의 특성분석)

  • Kim, Sun-Jae;Wang, Guoming;Park, Seo-Jun;Kil, Gyung-Suk;An, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • This paper deals with the characteristics of partial discharge (PD) for the purpose of a condition based maintenance (CBM) of gas insulated switchgears (GIS) in power equipment. Four types of electrode systems such as a protrusion on enclosure (POE), a particle on spacer (POS), a free particle (FP) and a Floating were designed and fabricated. PD pulses were measured using UHF sensor with a frequency range of 300 MHz~1.4 GHz and a DAQ with a sampling rate of 250 MS/s. Discharge inception voltage (DIV), discharge extinction voltage (DEV), and phase resolved partial discharge (PRPD) were analyzed depending on electrode systems. The average DIV in the POS was 28.8 kV. It was about 1.7 times higher than that in the FP, which was the lowest value of 17.2 kV. The FP shuffled and jumped at the applied voltage of 23.5 kV. Over 95% of PD pulses in the POE were generated in the negative polarity ($181^{\circ}{\sim}360^{\circ}$) of applied voltage. The results showed the phase (${\Phi}$)-magnitude (dBm) of PD pulses by UHF sensor, a cluster was formed separately depending on electrode systems.

V-t Characteristics in $SF_6-N_2$ Mixtures for Transient Impulse Voltages ($SF_6-N_2$ 혼합가스에서 과도임펄스전압에 대한 V-t특성)

  • Lee, Bok-Hui;Lee, Gyeong-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.456-465
    • /
    • 2001
  • In this paper, breakdown voltages in $SF_6-N_2$ mixtures were experimentally investigated to understand characteristics of dielectric strength and physical phenomena in nonuniform field disturbed by a needle shape protrusion. The test voltages are the lightning impulse$(\pm1.2/44 \mus)$ and the damped oscillatory impulse$(\pm400 ns / 0.83 MHz)$ voltages which can be occurred by the operation of disconnecting switches in gas-insulated switchgears(GIS). The effects of the polarity and wave shape of the test voltages, and the gas pressure on the V-t characteristics were in detail examined. The V-t characteristic curves were measured in different two ways : (1) one is the method by taking the maximum voltage recorded at or prior to breakdown against the time to breakdown, that is, the Procedures recommended in IEC 60060-1, (2) the other is the method by taking the voltage at the instant of chopping against the time to breakdown. As a result, the V-t characteristics of $SF_6-N_2$ mixtures in nonuniform electric field were significantly affected by the polarity and wave shape of the applied voltages. The positive breakdown voltages resulted in lower breakdown voltages in the time ranges considered, and the V-t curves for the negative oscillatory impulse voltage were extended over the longer time range. For the lightning impulse voltages, the V-t curves obtained by IEC Pub. 60060-1 were nearly same with the V-t curves obtained by the voltage at the instant of chopping against the time to breakdown. It is clear that the actual breakdown voltages were much lower than the maximum voltages appearing at or prior to breakdown because of the displacement current produced as a result of the dV/dt during the oscillatory transient voltage app1ication. The scattering of the negative actual breakdown voltages was much larger than that of the positive.

  • PDF