• Title/Summary/Keyword: Gas injection test

Search Result 209, Processing Time 0.028 seconds

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Assessment of Leak Detection Capability of CANDU 6 Annulus Gas System Using Moisture Injection Tests

  • Nho, Ki-Man;Kim, Wang-Bae;Sim, Woo-Gun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.403-415
    • /
    • 1998
  • The CANDU 6 reactor assembly consists of an array of 380 pressure tubes, which are installed horizontally in a large cylindrical vessel, the Calandria, containing the low pressure heavy water moderator. The pressure tube is located inside the calandria tube and the annulus between these tubes, which forms a closed loop with $CO_2$ gas recirculating, is called the Annulus Gas System(AGS). It is designed to give an alarm to the operator even for a small pressure tube leak by a very sensitive dew point meter so that he can take a preventive action for the pressure tube rupture incident. To judge whether the operator action time is enough or not in the design of Wolsong 2,3 & 4, the Leak Before Break(LBB) assessment is required for the analysis of the pressure tube failure accident. In order to provide the required data for the LBB assessment of Wolsong Units 2, 3, 4, a series of leak detection capability tests was performed by injecting controlled rates of heavy water vapour. The data of increased dew point and rates of rise were measured to determine the alarm set point for the dew point rate of rise of Wolsong Unit 2. It was found that the response of the dew point depends on the moisture injection rate, $CO_2$ gas flow rate and the leak location. The test showed that CANDU 6 AGS can detect the very small leaks less than few g/hr and dew point rate of rise alarm can be the most reliable alarm signal to warn the operator. Considering the present results, the first response time of dew point to the AGS $CO_2$ flow rate is approximated.

  • PDF

The Status of Methane Hydrate Development (메탄하이드레이트 개발동향)

  • Kim, Young-In
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.71-84
    • /
    • 2013
  • Most gas hydrates (GH) occur in ocean sediments. Global GH reserves are estimated to be $10^{13}{\sim}20{\times}10^{15}m^3$, which is nearly 1,000 times the amount of current world energy consumption. Methane hydrate (MH) has the potential to be developed into future natural gas resources to replace traditional oil and gas resources, and thus MH production technologies such as depressurization, inhibitor injection, thermal stimulation, and $CO_2-CH_4$ substitution need to be further developed. MH production, which is expected to be in test production until 2014 in Korea, is focused on the development of GH production technologies for use in the commercial production of methane gas. This study compares MH production technology and its ability to meet the twin goals of being both effective and environmentally friendly while taking into consideration the complex phenomena of GH decomposition.

A Study on Cooling Characteristics of Combustion Gas by Liquid Nitrogen in a Liquid Rocket Engine (액체질소를 이용한 액체 로켓 엔진 연소 가스 냉각 특성 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Song, Jae-Kang;Kim, Yoo;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-150
    • /
    • 2007
  • In this study, cooling characteristics of combustion gas were investigated by injecting liquid nitrogen into liquid rocket combustion chamber. A injection ring of liquid nitrogen was installed between a combustion chamber and a mixing chamber which was designed for mixing of combustion gas and nitrogen. At first, a ignition test of liquid rocket engine was conducted to verify a stable combustion process and 10 second combustion tests were successfully conducted. The results showed that combustion gas of LRE could be cooled by using liquid nitrogen.

  • PDF

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

A Study on the Cold Startability and Emission Characteristics of LPG Vehicle According to Test Temperature (시험온도에 따른 LPG 차량의 저온 시동성 및 배출가스 배출특성 연구)

  • Lee, Min-Ho;Kim, Sung-Woo;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas ($CO_2$, $CH_4$, $N_2O$) regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions (PM) particle of automotive had many problem that cause of ambient pollution, health effects. This paper discussed the influence of LPG fuel on automotive cold startability and exhaust emissions gas. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of cold startability, exhaust emission and greenhouse gas emission was analyzed.

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

Visualization of the Icing at LPLi Engine Injector and the Effect of the Inflow of Ice Particle into Cylinder on the Combustion and the Exhaust Gas (LPLi 엔진 인젝터의 결빙조각 형성이 연소 및 배기가스에 미치는 영향)

  • 박정철;김우석;이종화;이병옥;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • As air pollution has become an important issue across the world, studies of clean fuel are on going to reduce combustion emissions. One example is development of the LPLi(Liquefied Phase LPG injection) engine. Some problems are occurred during development. One of the problems is icing phenomenon at injector tip due to evaporation potential heat when liquid LPG is injected. If the Icing is raised at injector tip or injector inserting hole, it disturbs fuel injection. And if the ice particles are inducted into cylinder, it brings problems associated with control of emission and air/fuel ratio. In order to solve the problems, a rig system was set up and observed Icing of injector tip. Engine test was carried out for visualization of injector tip icing and its effects on combustion and emissions.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Review about test method for the full-insulation verification of circuit breaker rated on 800kV, 50kA (800kV, 50kA 차단기의 전절연 검증을 위한 시험방법 검토)

  • Park, Seung-Jae;Suh, Yoon-Taek;Yoon, Hack-Dong;Kim, Yong-Sik;Kim, Maeng-Hyun;Koh, Heui-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.569-571
    • /
    • 2005
  • In case of dead-tank circuit breaker with the earthed enclosure, the dielectric performance for phase to ground should be verified under the hot-gas condition produced by the current interruption. This test condition is required in breaking test duties with the rated short-circuit current and rated voltage. And, KERI has completed the reinforcement of the synthetic testing facilities and these facilities have the testing capacity which enables the full-pole testing for 800kV circuit breaker by adopting the series voltage injection method. So, this paper introduced the test circuit and procedures about the full-pole and the multi-part testing method which was devised to estimate the full -insulation of phase-to-ground for the multi-pole and dead-tank circuit breaker.

  • PDF