• 제목/요약/키워드: Gas flow rate

검색결과 2,389건 처리시간 0.028초

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

Gas flow rate에 따른 p-layer의 특성변화가 태양전지 DIV 곡선에 미치는 영향 분석 (Effect of p-layer in Solar cells DIV characteristics using defferent gas flow rate)

  • 박승만;이영석;이범상;이돈희;이준신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.253-255
    • /
    • 2009
  • 박막태양전지에서 빛을 처음 받아들이는 p-layer는 전체적인 태양전지 특성에 큰 영향을 준다. 본 논문에서는 p-layer의 gas flow rate를 가변하여 증착한 P-I-N cell을 통해 DIV를 측정하고 분석하였다. 더불어 gas flow rate에 따른 p-layer의 특성변화를 토대로 시뮬레이션을 진행하여 실제 소자와 비교하여 보았다. simulation da와 experimental data를 비교해보면 전체적으로 유사한 경향성을 보이며 saturation current는 큰 차이를 보이지 않았으나 ideality factor와 series resistance에서 real device가 비교적 큰 값을 나타내는 것을 볼 수 있었다. 본 연구는 simulation data를 기반으로 real device를 제작하는데 큰 도움이 될 것이다.

  • PDF

전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측 (Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction)

  • 조황묵;이경원;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구 (A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed)

  • 강성원;민병훈;서성섭
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

열선을 이용한 혼합기체의 농도와 유량의 측정 (Measurement of Gas Concentration and flow Rate Using Hot Wire)

  • 김영한;최종정
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.407-412
    • /
    • 2002
  • A measurement device for gas concentration and flow rate using hot wire is developed for the utilization in industrial applications. The device has two cells of measuring and reference, and a bridge circuit is installed to detect electric current through the hot wire in the cells. An amplification of the signal and conversion to digital output are conducted for the on-line measurement with a personal computer. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. Also, the concentration of air-carbon dioxide and carbon dioxide-argon mixtures is determined for the same evaluation. The outcome of the performance test indicates that the accuracy and stability of the device is satisfactory for the purpose of industrial applications.

경계조건에 따른 가스터빈 블레이드 냉각공기 유량변화 (Effect of Boundary Condition on the Flow Rate of the Internal Coolant in Gas Turbine Blades)

  • 신지영;박병규
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.888-894
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant should be used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험 (Experimental Study on Cryogenic Propellant Circulation using Gas-lift)

  • 권오성;이중엽;정용갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

온돌의 연탄개스유량에 관한 연구 (2) (유도연관내의 개스유동) (Study on the Flow of Briquette Gas in the Ondol Heating System (2) (Gas Flow in a Briquette Flue Tube))

  • 민만기;정재선
    • 대한설비공학회지:설비저널
    • /
    • 제4권4호
    • /
    • pp.275-284
    • /
    • 1975
  • By the experiment of a model Ondol heating system gas flow characteristics in a briquette flue tube was investigated. As a heat source electric heater was used, which renders steady flow condition of air. working fluid. It was observed that the flow augumentation may be obtained by increasing the vertial elevation of the flue tube, namely increase in the tube length or increase in the tube inclination, and the gas temperature at the tube entrance Among several factors which augument the flow rate slope of the flue tube has the most striking effect and then the temperature of gas entering the tube. Increase in length of the tube also auguments the flow but the rate of augumentation is so small that it gives little assistance to improvement of the flow The flow in a briguette flue gas does not essentially satisfy the one dimensional steady flow assumption. It is also observed that the flow begins to accompany irregular velocity fluctuation as inclination of the tube increases.

  • PDF

열량형 질량 유량계의 성능 평가 (A Study on the Performance of Thermal Mass Flowmeter)

  • 최용문;박경암;윤복현;장석;최해만;이생희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구 (Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate)

  • 김대완;기한 에카나야케;이무연
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.15-20
    • /
    • 2018
  • 본 논문은 자동차 열전발전용 열교환기에서 배기가스의 유량과 온도 변화에 따른 발열량 특성을 수치적으로 연구하였다. 자동차 열전발전용 열교환기는 내부에 핀을 설치하여 자동차 배기가스에서 나오는 열에너지를 열전소자로 최대 값을 전달할 수 있도록 하였으며, 상용 프로그램인 CAD를 이용하여 설계하였다. 그리고 배기가스의 유량과 온도 변화에 따른 열교환기 발열량 특성을 분석하기 위하여 상용 프로그램인 ANSYS CFX v17.0을 이용하여 배기가스 유량은 0.01, 0.02, 0.03 kg/s로 변화시키고, 배기가스 온도는 400, 450, 500, 550, $600^{\circ}C$로 변화시켜 수치해석 하였다. 결론적으로 열교환기의 입구 측과 출구 측 배기가스 압력 차는 배기가스의 유량에 따라 결정된다. 배기가스 유량이 증가하면 열교환기 입구 측과 출구 측 압력차는 증가하지만, 열교환기 입구 측과 출구 측 배기가스 압력차는 배기가스 온도에 따라 변하지 않는다. 따라서 열교환기 표면 온도를 최대 값으로 얻기 위해서는 배기가스 유량은 낮추고, 배기가스 온도는 높여야 한다는 결론을 도출하였다.