• Title/Summary/Keyword: Gas chromatography-mass spectrometry (GC/MS)

Search Result 663, Processing Time 0.029 seconds

Simple Method in Trace Analysis of Phthalates in Cosmetics : Analytical Conditions and Skills for Better Results (화장품에서 프탈레이트 미량분석을 위한 간편한 분석법 : 향상된 결과를 위한 분석조건과 기술)

  • Kim, Min-Kee;Jung, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-55
    • /
    • 2008
  • Although phthalates aren't used as an cosmetic ingredient, some cosmetics especially nail lacquer, hair spray, and perfume still have phthalates. This is mainly caused by contamination and carryover during manufacturing process, so analysis of phthalates in those cosmetics has became a very important thing for quality-assurance(Q.A). The main phthalates under debate are diethyl phthalate(DEP), dibutyl phthalate(DBP), and bis(2-ethylhexyl) phthalate (DEHP) in domestic market. Gas chromatography-mass spectrometry(GC-MS) coupled with solvent extraction and concentration has been used for ppm level and sub ppm level analysis of phthalates. It requires much time and cost to use mass spectrometric detector and to prepare the test solution. Moreover analysis of phthalates at low concentrations is difficult because of contamination which results in wrong analytical results. In the present study, we showed a simple method using gas chromatography-flame ionization detector(GC-FID) which has fast analysis time, minimum use of solvent, reduced sample preparation steps for minimizing contamination and quantitative range of $2{\sim}50{\mu}g/g(ppm)$ in products. Consequently, this method will be proper for Q.A analysis in related companies.

Determination of Residue Levels of Ethyl Carbamate in Alcoholic Beverages by Gas Chromatography/Tandem Mass Spectrometry (GC/MS/MS) (가스크로마토그래피/질량분석기(GC/MS/MS)를 이용한 주류 중 에틸카바메이트 잔류량 조사)

  • Kim, Dong-Ho;Jang, Han-Sub;Choi, Gu-Il;Kim, Hyun-Jung;Kim, Ho-Jin;Kim, Hyo-Lin;Kim, Keun-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Ethyl carbamate (EC) is a contaminant generated in the fermentation processes of various fermented foods. In this study, residue levels of EC in 95 alcoholic beverage samples were determined by using Gas Chromatography/Tandem Mass Spectrometry (GC/MS/MS). All the samples were purified by a liquid-liquid extraction (LLE) method using dichloromethane. The LLE method enables an improvement in time and cost to detection and specificity over the conventional extraction methods. The limits of detection and quantification (LOD and LOQ) to analyze EC were 1.3 and 4.0 ng/mL, respectively. The recovery rates of EC were ranged from 90.0 to 97.5% at the levels of 50, 100, and 500 ug/L. Among traditional grain-based alcoholic beverage samples (n = 34), the average residue levels of EC in takju, yakju, and cheongju were 0.63, 7.01, and 14.11 ug/L, respectively. Among fruit-based alcoholic beverage samples (n = 48), those of EC in japanese apricot spirits, bokbunjaju, grape wines, and other fruit wines were 79.18, 1.66, 2.64, and 2.39 ug/L, respectively. Among distilled or diluted alcoholic beverage samples (n = 13), those of EC in soju (distilled or diluted), general distillates, liquors, and brandies were 0, 3.30, 8.20, and 8.52 ug/L, respectively. Therefore, this study reports that the residue levels of EC in the alcoholic beverages, distributed in the current domestic markets, did not reach its maximum allowed levels of 30 and 400 ug/L established for grape and fruit wines in Canada, respectively.

Comparison Analysis of Aromatic Compounds in the Aromatic Rice Germplasm by Gas Chromatography and Mass Spectrometry (Gas Chromatography-Mass Spectrometry에 의한 향미 유전자원의 방향성 화합물 비교분석)

  • Kim, Jeong-Soon;Cho, Jum-Rae;Gwag, Jae-Gyun;Kim, Tae-San;Ahn, Sang-Nag;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.88-103
    • /
    • 2009
  • The volatile and semi-volatile compounds of 5 accessions of domestic scented and 25 accessions of introduced scented were extracted by solid phase microextraction (SPME) and analyzed by gas chromatographymass spectrum (GC-MS). A total of 156 volatile and semivolatile compounds were identified from 30 accessions of aromatic rice, including 32 alcohols, 25 acids, 25 ketones, 21 hydrocarbon, 18 esters, 16 aldehydes, 4 ethers, 5 amines, 2 phenols, 2 bases, and 8 miscellaneous compounds. By UPGMA/Neighbor-join tree analysis, the thirty accessions of aromatic rice could be classified into seven groups according to the major odor or aroma compounds. Group I included indica type of Basmati varieties. Group II and Group IV included japonica type introduced scented. Group III consisted only Hyangmibyeo1ho in domestic scented. Group V and Group VII included indica type of Basmati and non-Basmati varities. Group VI included four of domestic scented of seven accessions excepted Basmati6129, Basmati 6311, and Seratus Malam.

Determination of fuel marker in petroleum products using GC-MS (GC-MS를 이용한 석유제품 중의 식별제 분석)

  • Youn, Ju Min;Doe, Jin Woo;Yim, Eui Soon;Lee, Jung Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1073-1080
    • /
    • 2018
  • There are several types of petroleum products used for the fuel oil, according to their respective quality standards, grades and usage. Depending on the degree of oil tax rate by country, even the same petroleum products will have price gap. The illegal mixing of cheap petroleum products, which are subject to the lower tax rate, with relatively expensive transportation fuel causes problems such as tax evasion, environmental pollution and vehicle breakdown. In order to prevent illicit production and mixing of these different petroleum products, a small amount of markers are legally added to specific petroleum products. In Korea, markers are introduced and used to prevent illegal activity that kerosene used as fuel for house and commercial boiler are mixed with automotive diesel fuels, and marker contents are analyzed to use UV-Vis spectrophotometer and high performance liquid chromatography (HPLC). In this study, we have developed a method to qualitatively and quantitatively determine the marker added to petroleum products by gas chromatography-mass spectrometry (GC-MS) without adding developing reagent or sample pre-treatments.

Toxicokinetics of 4-tert-octylphenol in rats (Rat에서의 Octylphenol의 독성동태 연구)

  • 손수정;강현구;이선우;서수경;박인숙;안미령;최홍석;조재민;손동환
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.122-127
    • /
    • 2001
  • 4-tert-octylphenol (OP) is a surfactant additive widely used in the manufacture of a variety of detergents and plastic products. Also, OP is known to have estrogenic activity by interacting with development and functions of endocrine system. This study was carried out to obtain toxicokinetic parameters of OP in male Sprague-Dawley rats. Male rats were administered OP, by either single oral (gavage) applications of 50, 100 or 200 mg/kg body weight. or a single intravenous injections of 1, 5 or 10 mg/kg body weight. Blood samples taken at several time intervals after administration were obtained from the femoral artery. Analysis of blood samples for OP was performed by gas chromatography mass spectrometry (GC/MS). The detection limit of OP was 1.9 ng/$m\ell$ at SIM (selected ion monitoring) mode of GC/MS. Calibration curve for analysis of the concentrations of OP in plasma was (OP/butylphenol peak area ratio) = 0.0294 $\times$ (plasma cone.) + 0.028 ($r^2$= 0.9991). The OP plasma concentration was 3921 ng/$m\ell$ immediately after single intravenous application, decreased rapidly within 45 min, and was detectable at low concentration up to 6 hr after application. When administered orally in rats (50, 100 and 200 mg/kg), OP was detected in the blood early after gavage administration, indicating the rapid initial uptake from gastrointestinal tract, with Tmax obtained from 0.67~0.83 hr. Using the AUC (area under the curve) of plasma concentration vs. time, low oral bioavailabilities of 1.2, 5.0 and 5.3% were calculated for the 50, 100 and 200 mg/kg groups, respectively.

  • PDF

Simultaneous Determination of Plasticizers in Food Simulants Using GC/MS

  • Park, Na-Young;Yoon, Hae-Jung;Kwak, In-Shin;Jeon, Dae-Hoon;Choi, Hyun-Chul;Eum, Mi-Ok;Kim, Hyung-Il;Sung, Jun-Hyun;Kim, So-Hee;Lee, Young-Ja
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.93-98
    • /
    • 2009
  • Migration levels of plasticizers, di-n-butyl phthalate (DBP), benzyl-butyl phthalate (BBP), di-n-octyl phthalate(DNOP), di-iso-decyl phthalate (DIDP) and di-iso-nonyl phthalate (DINP), di-(2-ethylhexyl) adipate (DEHA), from 46 poly(vinyl chloride) (PVC) wrap films and 54 PVC gaskets into food simulants were determined using gas chromatography/mass spectrometry (GC/MS). The method was validated with limit of detection (LOD) of $0.01{\sim}0.02\;{\mu}g/mL$ for DBP, BBP, DNOP and DEHA, and $2\;{\mu}g/mL$ for DIDP and DINP. The linearity were found to be > 0.99 for all the compounds in concentration range of $0.1{\sim}81.4\;{\mu}g/mL$, and overall recoveries were ranged from 90.4 ~ 99.6%. DBP, BBP, DNOP, DEHA, DIDP and DINP were not detected in food simulants, except 1 wrap sample from which 0.28 and $0.99\;{\mu}g/mL$ of DEHA were detected respectively when tested with 20% ethanol and n-heptane as food simulants. These values were below the regulatory limitation in European Union (EU).

  • PDF

Composition of the Adhesive Used for Fixing Glass Eyes of the Stone Standing Maitreya of Daejosa Temple, Buyeo (Treasure No. 217)

  • Park, Jongseo;Lee, Sunmyung
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.295-307
    • /
    • 2019
  • In the process of the conservation treatment of the glass eyes of the stone standing Maitreya of Daejosa temple, Buyeo (Treasure No. 217), a blackish material, expected to be the adhesive for fixing the glass eyes, was collected and analyzed. Infrared spectroscopy and pyrolysis/gas chromatography/mass spectrometry (pyrolysis/GC/MS) were employed to identify the organic material in the sample. The IR analysis revealed the presence of materials such as apatite or bone black. The pyrogram of the sample was similar to that of Asian lacquer, among traditional adhesives. In particular, the pyrolysis/GC/MS analysis with online methylation detected 1,2-dimethoxy-3-pentadecylbenzene, methyl 7-(2,3- dimethoxyphenyl) heptanoate, and methyl 8-(2,3-dimethoxyphenyl)octanoate. These are known to be the pyrolysis products of catechol and its oxidation product, which indicated the presence of Asian lacquer in the sample. X-ray diffraction, X-ray fluorescence, and thermal gravimetry analysis showed that the sample contained ca. 60% inorganic substances, including apatite. Radiocarbon dating of the sample suggested that the blackish material was applied between the late 13th and early 15th century, revealing some discrepancy with the art-historical manufacturing time of the Maitreya. From the above analysis, it was concluded that Asian lacquer and bone ash were used to attach the glass eyes by forming a thick blackish lacquer layer.

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

A Study on the Identification of Hazardous Organic Substances for Industrial Classification (업종별 유해성 유기물질의 확인에 대한 연구)

  • Park, Sun Ku;Kim, Sung Soo;Ko, O Suk;Jung, Sung Woong;Park, Jun Dae;Ryu, Seung Do;Ryu, Jae Kyun;Cho, Hyun-Woo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.392-398
    • /
    • 1996
  • Eleven organic chemical substances, tetrachloroethylene, ethyl benzene, p-xylene, o-xylene, isopropyl benzene, n-propyl benzene. 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, p-isopropyl toluene. see-butyl benzene, and naphthalene, which have hazardously influenced to human, were extracted from untreated wastewater collected at 26 companies of 8 types industry in the basin of Kwangju stream. Their structures were elucidated by Gas Chromatography/Mass Spectrometry(GC/MS) and in comparison with each standard reagents.

  • PDF

Characteristics of Bio-oil by Pyrolysis with Pig Feces (돈분을 이용한 열분해공정 바이오오일의 특성)

  • Kun, Zhu;Choi, Hong L.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The characteristics of the bio-oil produced by the pyrolysis process with pig feces was investigated in this paper. The continuous auger-type reactor produced bio-oil was maintained at the temperature range of 400 to $600^{\circ}C$, which was higher than a typical that in a conventional pyrolysis system. The pig feces was used as the feedstock. The bio-oil and its compositions were characterized by water analysis, heating values, elemental analysis, bio-oil compounds, by Gas Chromatography/Mass Spectrometry (GC/MS), and functional group by $^1H$ NMR spectroscopy. It was found that the maximum bio-oil yields of 21% w.t. was achieved at $550^{\circ}C$. This result suggested that this auger reactor might be a potential technology for livestock waste treatment to produce bio-oil because it is able to be improved to reach higher efficiency of bio-oil production in further study. The pyrolysis system reported herein had low heat transfer into the feedstock in the auger reactor so that it needs improve the heat conduction rate of the system in further study.

  • PDF