• Title/Summary/Keyword: Gas adsorption efficiency

Search Result 125, Processing Time 0.031 seconds

Preparation of High Performance Hybrid Chemical Filter using Hot Melt Adhesive by Web Spray and Their Adsorption Properties (핫멜트 Web spray법을 이용한 고기능성 복합 화학필터의 제조 및 흡착특성)

  • Choi, Yong Jae;Shin, Kyoung Sub;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2009
  • In this study, the high performance hybrid chemical filter (HPHCF) was prepared by web spray using hot melt adhesive. The material of HPHCF was conditionally made of ion exchange resin and PP non-woven fabric. The optimum temperature and pressure for manufacturing of HPHCF conditions were such as $170^{\circ}C$ and 50 psi, respectively. The characteristics of preparated HPHCF and their adsorption properties of ammonia gas were investigated. The ion exchange capacity (IEC) of HPHCF was increased with increasing the resin contents and their values were higher than pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with the increase of packing density of hybrid ion exchange fabrics in the column. It showed 13 min which the adsorption breakthrough time was slower than resin and fibers. The maximum value of adsorption for ammonia gas was 98 percent. And also, the velocity was increased with increasing concentration and flow rate of ammonia gas.

  • PDF

Influence of Plasma Treatment on Hydrogen Chloride Removal of Activated Carbon Fibers

  • Park, Soo-Jin;Kim, Byung-Joo;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.103-107
    • /
    • 2004
  • The atmospheric pressure plasma treatments ($Ar/O_2$ and $Ar/N_2$) of activated carbon fibers (ACFs) were carried out to introduce hydrophilic functional groups on carbon surfaces in order to enhance the hydrogen chloride gas (HCl) adsorption. Surface properties of the ACFs were determined by XPS and SEM. $N_2$/77 K adsorption isotherms were investigated by BET and D-R (Dubinin-Radushkevich) plot methods. The HCl removal efficiency was confirmed by HCl detecting tubes (range:1~40 or 40~1000 ppm). As experimental results, it was found that all plasma-treated ACFs showed the decrease in the pore volume, but the HCl removal efficiency showed higher level than that of the untreated ACFs. This result indicated that the plasma treatments led to the conformation of hydrophilic functional groups on the carbon surfaces, resulting in the increase of the interaction between the ACFs and HCl gas.

  • PDF

A Study on the removal of B.T.X by UV Photooxidation-Activated Carbon (광산화-활성탄 복합공정에 의한 B.T.X. 분해에 관한 연구)

  • Jeong, Chang Hun;Bae, Hae Ryong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • In this study, The decomposition of gas-phase Benzene and Toluene, Xylene in air streams by direct UV Photolysis, UV/TiO$_2$ and UV/TiO$_2$/A.C process was studied. The experiments were carried out under various UV light intensities and initial concentrations of B.T.X to investigate and compare the removal efficiency of the pollutant. B.T.X was determined by GC-FID of gas samples taken from the a glass sampling bulb which was located at reactor inlet and outlet by gas-tight syringe. From this study, the results indicate that UV/TiO$_2$/A.C system (photooxidation-photocatalytic oxidation-adsorption process) is ideal for treatment of B.T.X from the small workplace. Although the results needs more verifications, the methodology seems to be reasonable and can be applied for various workplace (laundry, gas station et al.).

Eco-Friendly and Thermal Conductivity Properties of Magnesium oxide Matrix Utilizing Bentonite (벤토나이트를 활용한 산화마그네슘 경화체의 친환경성 및 열저항 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.64-65
    • /
    • 2016
  • This study that prevent cancer using absorbent to inflow Radon gas in the room existing soil and rock is making board to absorb the Radon gas as a fundamental study. So, we use bentonite as a absorbent. So, we use bentonite as a absorbent. Bentonite is a 'clay mineral' composed to montmorillonite of main component that volcanic ash denatured to a clay mineral. Bentonite has fine microparticle of nano level, abundant mineral 66 of kinds, adsorbability, swelling, a positive ion(heavy metal adsorption reaction) as a bentonite's property. Using magnesia cement for oxide of magnesiuma and magnesium chloride as a main binder, we measure Radon gas absorbent efficiency and thermal conductivity.

  • PDF

Production of Activated Carbon from Bamboo by Gas Activation Method (기상 활성화법에 의한 대나무 활성탄 제조)

  • 조광주;박영철
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • The activated carbon was produced from Sancheong bamboo by steam and carbon dioxide gas activation methods. The carbonization of raw material was conducted at 90$0^{\circ}C$ and gas activation reactions were conducted with respect to various conditions. -activation temperature 750-90$0^{\circ}C$, the flow rate of steam 0.5-2g-$H_2O$/g-char$.$hr, the flow rate of carbon dioxide 5-30$m\ell$-$CO_2$/g-char-min and activation time 1-5 hr. The prepared activated carbons were measured yield, the adsorption capacity of iodine and methylene blue, BET specific surface area and pore size distribution. The adsorption capacity of iodine (680.5-1526.1 mg/g) and methylene blue (18.3-221.5 mg/g) increased with creasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the activation gas quantity in the range of 0.5-1.5g-$H_2O$/g-charㆍhr, 5-18.9$m\ell$-Co$_2$/g-charㆍmin. But those decreased over those range due to the pore shrinkage. The steam activation method was superior in efficiency to carbon dioxide activation method.

A Study on $SO_2$ Adsorption Characteristics by NMO in a Moving Bed Reactor (NMO를 이용한 이동층반응기에서의 $SO_2$ 흡착특성에 관하 연구)

  • 조기철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.399-408
    • /
    • 2000
  • This study evaluated the SO2 adsorption characteristics using a continous moving bed system. Natural manganese oxide (NMO) reaction condition such as L/D the starting time of the NMO feed, feed rate, and flow rate of simulated flue gas, and NMO size were tested. The results showed that optimum L/D was 1.0 in this moving bed system. The higher the feeding rate was the higher the SO2 removal efficiency was and the higher the flow rate of simulated flue gas was the shorter the time to reach the euqilibirum concentration was. The final SO2 con-centration when it reaches the equilibrium concentration was not affected by the starting time of the NMO feed.

  • PDF

A Study on VOCs Adsorption Properties Using Fine-fiber (극세섬유를 이용한 VOCs흡착 특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • This study is to develop of an adsorbent for the removing of human body harmful benzene, toluene, and p-xylene as VOCs. Thus, this study researched the adsorption efficiency of the commercial ACF and the reactivated ACF by KOH/ACF to molar 1: 1. As the results, the effects have shown to enlarge with the increasing of VOCs concentration for adsorptive breakthrough time and breakthrough percentage on each substance. Also, the study have investigated as a similar tendency in case of desorption efficiency for toluene and p-xylene at constant concentration as 125PPM and 0.5$\ell$/min volume flow rate. But in case of benzene, it has been investigated to have rather lower desorption efficiency re-activation ACF than commercial ACF.

Toxic Gas Removal Behaviors of Porous Carbons in the Presence of Ag/Ni Bimetallic Clusters

  • Kim, Byung-Joo;Park, Hoon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.782-784
    • /
    • 2008
  • Ag/Ni bimetallic cluster loading on porous carbon fibers was accomplished in order to enhance the HCl removal efficiency of the carbons. The surface properties of the Ag/Ni/carbons were determined by XRD and SEM. N2/77 K adsorption isotherms were investigated using BET and Boers t-plot methods. The HCl removal efficiency was confirmed by a gas chromatography technique, and it was found that that efficiency was predominantly improved in the presence of Ag/Ni clusters compared with the efficiencies of the as-received and single-metal-plated carbons. This indicates that synergetic reactions exist between Ag/Ni and HCl gas, resulting in advanced HCl removal capacity of porous carbons.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

Fabrication and Characterization of Hydrogen Getter Based on Palladium Oxide Doped Nanoporous SiO2/Si Substrate (PdOx가 도핑된 나노 기공구조 SiO2/Si 기반의 수소 게터 제작 및 특성평가)

  • Eom, Nu Si A;Lim, Hyo Ryoung;Choi, Yo-Min;Jeong, Young-Hun;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.573-577
    • /
    • 2014
  • The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb $H_2$ gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the $SiO_2/Si$ was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.